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Abstract— In multi-hop sensor networks, information obtained
by the monitoring nodes need to be routed to the sinks. If
we assume that the transmitter power level can be adjusted to
use the minimum energy required to reach the intended next
hop receiver, the energy consumption rate per unit information
transmission depends on the choice of the next hop node. In a
power-aware routing approach, most proposed algorithms aim at
minimizing the total energy consumption or maximizing network
lifetime. In this paper, we propose a new routing algorithm with
two goals: minimizing the total energy consumption and ensuring
fairness of energy consumption between nodes. We formulate this
as a nonlinear programming problem and use a sub-gradient
algorithm to solve the problem. We also evaluate the proposed
algorithm via simulations at the end of this paper.

I. INTRODUCTION

A wireless sensor network (WSNs) is a network consisting
of spatially autonomous devices using sensors to cooperatively
monitor physical or environmental conditions, such as tem-
perature, sound, vibration, pressure, motion or pollutants, at
different locations. A sensor transforms the collected data into
electric signals and sends it usually via a radio transmitter to a
sink node. The sink node acts as a gateway between the WSN
and external networks.

Fig. 1. An example of a sensor network.

WSNs are expected to have significant impacts on many
military and civil applications, such as combat field surveil-
lance, security and disaster management. Each sensor node
is powered by a limited energy source (e.g., a battery). As
sensor nodes can be deployed in large numbers at remote
locations, it is typically not feasible to recharge their batteries.
Once the energy of a node is depleted, that node is considered
dead. Although there have been significant improvements in
processor design and computing, advances in battery technolo-
gies still lag behind, making energy resource considerations a
fundamental challenge in WSNs. These challenges necessitate
energy-awareness at all layers of the networking protocol
stack. In particular, many researchers have shown interest in
routing protocols at the network layer.

In sparse sensor networks, a mobile sink model was pro-
posed in [1]. The mobile sinks move around the network area
and collect data from the visited sensors. Use of mobile sinks
decreases energy consumption of sensor nodes. However, it
creates new challenges, e.g., complex hardware of the sinks
and dynamic routing and security [2].

Static sink model is used in most sensor networks. Routing
protocols in a static sink WSN are divided into single-hop
routing, two-hop routing and multi-hop routing. Using single-
hop routing, sensor nodes directly send data to the sink node.
Because data is transmitted over long distances, the single-
hop WSN consumes significant energy (transmission energy
is proportional to the kth power of the distance between two
nodes, where k ≥ 2). A two-hop routing protocol is proposed
in [3]. The network is divided into many clusters. In each
cluster, a sensor node is chosen as the cluster head. Sensor
nodes in a cluster send data to the cluster head and the cluster
head sends it to the sink node.

In general, many researchers have great interest in the multi-
hop routing protocols in WSNs. By forwarding data to a
neighboring node, a sensor can send data to the sink via
many paths. Recent researches have focused on finding out
the best possible path to the sink. In the early multi-hop
routing literature, routing algorithms for minimizing energy
consumption were proposed [4] [5]. The cost of a link between
two sensor nodes is considered as a function of energy. Sensor
nodes send data via the shortest path to minimize the cost of
data transmission. In minimizing energy routing protocol, if
all the traffic is routed through the minimum cost path to the
sink, the nodes along that path will quickly run out of power.
This renders other nodes useless due to a network partition
even if they still have available energy resources.

Instead of minimizing the energy consumption, many re-
searchers have attempted to maximize the time until the first
node runs out of energy. This approach introduced the max-
min lifetime routing algorithms [6] [7] [8] [9] [10].

The problem of max-min lifetime routing protocols is that
they do not save energy in the whole network. In a large
scale sensor network, saving energy in the whole network is
more important than that at individual nodes. Other notable
approaches include maximizing data collection [11] or maxi-
mizing residual energy [12].

Although there is a lot of research work on power-aware
routing in sensor networks, no previous work has considered
the fairness in energy consumption between sensor nodes. In
this paper, in addition to maximizing the network lifetime,
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we aim at enhancing fairness among nodes in terms of their
energy consumption.

The remainder of this paper is organized as follows. Sec-
tion II showcases some research work related to routing in
WSN. In Section III, we formulate the problem as a nonlinear
programming problem. In Section IV, we solve this nonlinear
programming problem by using a sub-gradient algorithm. In
Section V, we evaluate the proposed algorithm via simulations.
Finally, Section VI concludes the paper.

II. RELATED WORK

Two minimizing energy consumption routing protocols are
proposed in [4] [5]. Singh et al. [4] have used the Dijkstra
shortest path algorithm to search for the minimum energy
path. This protocol uses the transmission power as the link
cost. Therefore it minimizes the total transmission power of
the sensor network. Actually, the intermediate nodes consume
energy not only when forwarding packets but also when re-
ceiving packets. The protocol in [5] used both the transmission
power and the receiving power as a link cost metric. Using
the Bellman-Ford shortest path algorithm, it attempts to find
the minimum energy path.

The max-min network lifetime routing algorithms can be
formulated as an optimal problem.

Tmin = min(T1, T2, ..., Tn) (1)

Maximize Tmin (2)

where, Ti denotes lifetime of node i. This is a NP-hard
problem [10]. In [6] [7] [8] [9] and [10], researchers pro-
posed algorithms to find out approximate solutions. Chang
et al. [6] formulated the routing problem as a linear pro-
gramming problem. A shortest cost path routing algorithm is
proposed using combination of “transmission and reception
energy consumption” and “the residual energy levels at the
two end nodes” as the link cost. It is shown that the proposed
algorithm can achieve a network lifetime very close to the
optimal lifetime obtained by solving the linear programming
problem. Madan et al. [7] described the problem as a linear
programming problem with model energy conservation at each
node as the set of constraints. A sub-gradient algorithm is used
to solve the problem. Xue et al. [9] modeled the max-min
lifetime routing algorithm problem as a multi-commodity flow
problem, where a commodity represents the data generated
from a sensor node and delivered to a sink. A fast approximate
algorithm is proposed. Kelly et al. [13] proposed proportional
fairness and showed that by maximizing a sum of concave
functions, one can solve a linear optimization problem with a
fairness constraint. Using this theory, Hung et al. [11] made
attempts to maximize and to ensure fairness in collected data
among sensor nodes. A sub-gradient algorithm was used to
solve the nonlinear problem.

In this paper, we consider a surveillance sensor network.
Each sensor has to send a fixed amount of data to the sink at
each unit of time. Under this constraint and with the purpose of
maximizing the network lifetime, we first focus on minimizing

the total energy consumption of the network. To avoid the
pitfalls of minimizing energy consumption routing protocols
[4] [5], we also consider in the routing decision fairness
in the energy consumption between sensor nodes. We use
proportional fairness and formulate the problem as in [11].
However, to solve the nonlinear problem, we introduce a novel
technique in this paper.

III. PROBLEM FORMULATION

A. Application of Convex Functions

We formulate the problem using a property of convex
functions. As shown in Fig. 2, if U(x) is a convex function,
then for each vector (x1, x2, ..., xn) we have:

n∑
i=1

U(xi) = nU(x̄) +
n∑

i=1

yi (3)

where x̄ = x1+x2+...+xn

n and yi are the length of the segment
line between the tangent to U(x) at x̄ and the graph of U(x),
respectively. We thus have the following equivalence.

Minimize
n∑

i=1

U(xi)⇔ Minimize

{
nU(x̄)∑n

i=1 yi

(4)

Fig. 2. Property of convex function.

Choosing U(x) as a strictly increasing function, we have:

Minimize nU(x̄)⇔ Minimize
n∑

i=1

xi (5)

From Fig. 2, we can see that yi will have a small value if
xi approaches x̄. This will reduce the variance of the vector
(x1, x2, ..., xn); which means that we have fairness between
xi. Using this result, we can rewrite Eq. (4) as follows:

Minimize
n∑

i=1

U(xi)⇔
{

Minimize
∑n

i=1 xi

Fairness (x1, x2, ..., xn)
(6)

Now, using Eq. (6), we attempt to find the best route that
minimizes energy consumption and achieves fairness among
sensor nodes. Let ei denotes the energy consumption of node i
per a unit of time. To maximize the network lifetime, our first
purpose consists in minimizing the total energy consumption
by the following equation:

Minimize
n∑

i=1

ei (7)
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The second purpose consists in ensuring fairness in energy
consumption between nodes by:

Fairness (e1, e2, ..., en) (8)

According to Eq (6), we alter the problem described by Eq. (7)
and Eq. (8) to an optimization problem:

Minimize A =
n∑

i=1

U(ei) (9)

where U is a strictly increasing convex function.

B. Modeled Problem for WSN

WSNs can be modeled as a directed graph G(N,L), where
N is the set of all nodes and L is the set of all directed links.
Let xij denotes the flow on the link (i, j) if this link exists(
(i, j) ∈ [1, N ]2

)
. xij refers to the fixed amount of data that

node i must send to the sink. The flow vector has the following
constraint equation:∑

j∈out(i)

xij −
∑

j∈in(i)

xji = ai (10)

where out(i) and in(i) are the sets of the egress-nodes and
the ingress-nodes of node i, respectively. A flow matrix P ∈
R|N |×|L| is then constructed with the elements, pil, defined
by Eq. (11).

pil =




1 if link l = (i, j)
−1 if link l = (j, i)
0 otherwise

(11)

A data vector is also defined by a = {ai}. Then, we can
rewrite the flow vector constraint as:

Px = a (12)

Let es
ij and er

ji denote the energy needed for sending a unit of
data from node i to node j and the energy needed for receiving
a unit of data from node j to node i, respectively. Then, we
can calculate the energy consumption of node i in a unit of
time, ei, as a function of the flow vector x:

ei = ei(x) =
∑

j∈out(i)

es
ijxij +

∑
j∈in(i)

er
ijxji (13)

The energy vector is defined by e = {ei} and matrix
Q ∈ R|N |×|L| whose elements are:

qil =




es
ij if link l = (i, j)

er
ij if link l = (j, i)

0 otherwise

(14)

By rewriting Eq. (13) we have:

e = Qx (15)

From Eqs. (9), (12), (15), we establish a nonlinear program-
ming problem to find out the flow vector x that maximizes the
network lifetime:

Minimize A =
n∑

i=1

U(ei) (16)

Subject to: 


e = Qx
Px = a
x ≥ 0

(17)

IV. SOLUTION OF THE NONLINEAR PROGRAMMING

PROBLEM

A. Dual Problem

We use the Lagrange relaxation method to relax the con-
straints and then consider the dual problem.

L(x, e, λ, γ) = A(x) + λT (a− Px) + γT (e−Qx) (18)

D(λ, γ) = min L(x, e, λ, γ), (x, e ≥ 0) (19)

The dual of the problem described by Eq. (16) is:

Maximize D(λ, γ), (λ, γ ∈ RN ) (20)

The dual function of the convex function is a concave function.
Therefore, if at (λ0, γ0) the gradient D(λ0, γ0) equals zero,
then (λ0, γ0) is a solution to problem of Eq. (20). To find out
(λ0, γ0), we use the sub-gradient algorithm [14], which will
be described next.

B. Sub-gradient Algorithm

The sub-gradient at u ∈ Rn of a concave function f(v) is
a vector d ∈ Rn such that:

f(v) ≤ f(u) + (v− u)T d, ∀v ∈ Rn (21)

If f(u) is differential then the sub-gradient is the same as the
gradient.

Lemma: If L(x, e, λ0, γ0) takes minimum at x = x0, e = e0,
then the sub-gradient of D(λ, γ) at (λ0, γ0) is:

g =
(

a− Px0

e0 −Qx0

)
(22)

The proof of this lemma is similar to that in [11]. Now,
we can find (λ0, γ0) where the sub-gradient, g equals zero by
updating (λ, γ) in each iteration steps t, as follows:(

λt+1

γt+1

)
=

(
λt

γt

)
+ θ(t)gt(λt, γt) (23)

θ(t) needs to satisfy the following condition to ensure the
program convergence [7].

lim
t→∞ θ(t) = 0,

∞∑
t=0

θ(t) =∞ (24)

For example, θ(t) can be obtained by using the update rule:

θ(t) =
θ(0)√

t
(25)

where θ(0) is a fixed constant. The remaining problem is to
find (x0, e0) if (λ0, γ0) is given. We have to find (x0, e0) that
satisfies:

(x0, e0) = arg(min L(x, e, λ0, γ0)) (26)
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Therefore:

e0 = arg(min{
n∑

i=0

U(ei) + γT
0 e}) (27)

x0 = arg(min{−λT
0 Px− γT

0 Qx}) (28)

In Eq. (28), since the right side is a linear function of x then
the elements of x0, (xij) become 0 or infinity. The latter value
of xij cannot be acceptable. However, xij = 0 (∀i, j) means
that no sensor sends data to the sink node. To overcome this
problem, we add a strictly convex regularization term to the
primal objective function, value of which is rather small. For
example, we added a small quadratic term of x to the primal
objective function, A(x):

A(x)← A(x) +
∑

εijx
2
ij (29)

By using this, we can find out x0 by the following equation:

x0 = arg(min{
n∑

i=0

n∑
j=0

εijx
2
ij − λT

0 Px− γT
0 Qx}) (30)

Now, the algorithms to find out the solution of the nonlinear
programming problem in Eq. (16) can be formulated as:

(a) Initialize values of λ0 and γ0

(b) Find out e and x that make L min by Eqs. (27) and (30)
(c) Calculate sub-gradient g by Eq. (22)
(d) Update λ, γ and θ by Eqs. (23) and (25)
(e) If convergence is found, stop. Else, return to step (b).

V. EXPERIMENTAL RESULTS

We have simulated a network consisting of a sink and
50 sensor nodes randomly distributed over a square area
(100m × 100m). All nodes have the same initial energy,
E = 1J . The energy consumption model in [13] is used, i.e.,
sending and receiving one byte of data from a node i to a
node j over a distance of d meters costs (es

ij = c1 + c2d
2)

and (er
ji = c1), respectively. Here c1 = 0.4nJ/byte and

c2 = 0.08nJ/byte/m2. At every second, nodes have to send
1000 bytes of data to the sink.

A. The Impact of Function U

In the first experiment, to investigate the impact of function
U , we employ different utility functions. To quantify the
fairness between ei, we use the fairness index defined by
Eq. (31):

Fairness Index =
(e1 + e2 + ... + en)2

n(e2
1 + e2

2 + ... + e2
n)

=
ē2

ē2 + σ2
(31)

where ē and σ2 are the expected value of ei and the variance,
respectively. Eq. (31) shows that the fairness index always
lies between zero and one. High fairness index is taken if the
variance σ2 is small. This means that the energy consumptions
of all sensors are similar. Low fairness index means that
the variance σ2 is large, which indicates an unfair energy
consumption between nodes.

Fig. 3 shows the average fairness index and the average
energy consumption in 20 scenarios considered for different

values of α (α = 1,2,3,4,5...) using the utility function U(u) =
uα. Fig. 3 indicates that for large values of α, the fairness
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Fig. 3. Impact of the utility function on the overall performance.

index increases while the consumed energy becomes higher.
We explain this by using Eq. (4). When α is small, the term∑n

i=1 yi decreases. So it becomes much more important to
minimize the term nU(x̄). As a result, the energy consumption
is small and the fairness index becomes low. Increasing α
results in an increase in the ratio of

∑n
i=1 yi and nU(x̄). This

increases fairness index and the energy consumption.

B. Comparison to other Methods

Fig. 4. Shortest path
routing.

Fig. 5. Max-min lifetime
algorithm.

Fig. 6. The proposed
algorithm.

From the above results we set α to
three, which yields good fairness and
not much energy consumption com-
pared with other values of α. For com-
parison, we use the minimum energy
routing protocol in [4], which uses the
shortest path routing and the max-min
lifetime routing protocol presented in
[6]. Figs. 4, 5, and 6 show the network
traffic when using the shortest path
routing, the max-min lifetime routing
and the proposed algorithm, respec-
tively. The size of red dots indicates
the amount of energy that the sensor
nodes use per unit of time. This exper-
iment is performed in 20 different sce-
narios. The total energy consumption
and the fairness index are plotted in
Figs. 7 and 8, respectively. As shown
in Fig. 4, using the Dijkstra algorithm,
all nodes send data via the shortest
path. The total network consumption
energy is minimum (Fig. 7) but highly
unfair since some nodes use energy
much more than others. These nodes
run out of power very quickly. There-
fore, the fairness index is very low
(Fig. 8).

The max-min lifetime routing algo-
rithm is shown in Fig. 5. Nodes send
data to almost all of their neighbors.
Some of the neighbors are too distant.
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Therefore, the total energy consumption is significantly high
(Fig. 7). Fig. 6 shows the network flow in case of the proposed
algorithm. In the proposed approach, by dispersing traffic of
some nodes in the shortest path routing, the network does not
spend much energy (Fig. 7) and significantly improves the
fairness index (Fig. 8).

Fig. 9 shows the network lifetime if we assume the network
will die when n sensor nodes run out of energy. If n equals
one, the max-min lifetime routing algorithm achieves the best
performance. However, a sensor network, with a large number
of nodes, will still continue to function even if a few number
of nodes die. Then, we can see that the proposed algorithm
can improve the network lifetime.
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Fig. 7. Total energy consumption.
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Fig. 8. Fairness index.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15

N
e
t
w
o
r
k
 
L
i
f
e
t
i
m
e
 
(
1
0
3
s
)

n

Proposed Algorithm
Shortest Path

Max-min Lifetime

Fig. 9. Network lifetime (time until n nodes die).

VI. CONCLUSION

In this paper, we have proposed a new routing algorithm
for wireless sensor networks with two purposes: minimizing
energy use and making fair use of the resources available to
the nodes. We have used the property of convex function to
model a nonlinear programming problem and have employed
sub-gradient algorithms to solve it. The performance of the
proposed approach depends on the choice of the utility func-
tion. We have investigated the impact of the utility function
via experiments and compared the performance of the pro-
posed method in contrast to other methods. Experiment results
demonstrated that the proposed routing algorithm ensured
good fairness and reduced energy consumption. Thus, it can
improve the network lifetime. The remaining problem is to
find out the best utility function for a specific sensor network.

REFERENCES

[1] L. Tong, Q. Zhao, and S. Adireddy, “Sensor Networks with Mobile
Agents,” in Proc. IEEE MILCOM’03, Boston, MA, USA, Oct. 2003.

[2] W. Zhang, H. Song, S. Zhu, and G. Cao, “Least Privilege and Privilege
Deprivation: Towards Tolerating Mobile Sink Compromises in Wireless
Sensor Networks,” in Proc. of ACM MobiHoc, Urbana-Champaign, IL,
USA, May 2005.

[3] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An Application
Specific Protocol Architecture for Wireless Microsensor Networks,”
IEEE Trans. on Wireless Networking, Vol. 1, No. 4, Oct. 2002, pp.
660-670.

[4] S. Singh, M. Woo, and C. S. Raghavendra, “Power-aware Routing in
Mobile Ad-hoc Networks,” in Proc. of MobiCom, Dallas, Texas, USA,
Oct. 1998.

[5] V. Rodoplu and T.H. Meng, “Minimum Energy Mobile Wireless Net-
works,” IEEE J. Selected Areas in Comm., Vol. 17, No. 8, Aug. 1999,
pp. 1333-1344.

[6] J.H. Chang and L. Tassiulas, “Maximum Lifetime Routing in Wireless
Sensor Networks,” IEEE/ACM Trans. on Networking, Vol. 12, No. 4,
Aug. 2004, pp. 609-619.

[7] R. Madan and S. Lall, “Distributed Algorithms for Maximum Lifetime
Routing in Wireless Sensor Networks,” in Proc. of IEEE GLOBECOM,
Dallas, Texas, USA, Nov/Dec. 2004.

[8] A. Sankar and Z. Liu, “Maximum Lifetime Routing in Wireless Ad-hoc
Networks,” in Proc. of IEEE INFOCOM, Hong Kong, China, Mar. 2004.

[9] Y. Xue, Y. Cui, and K. Nahrstedt, “Maximizing Lifetime for Data Ag-
gregation in Wireless Sensor Networks,” ACM/Kluwer Mobile Networks
and Applications (MONET), Vol. 10, No. 6, Dec. 2005, pp. 853-64.

[10] J. Park and S. Sahni, “An Online Heuristic for Maximum Lifetime
Routing in Wireless Sensor Networks,” IEEE Trans. on Computers,
Vol. 55, No. 8, Aug. 2006, pp. 1048-1056.

[11] K.L. Hung, J.H. Zhu , B. Bensaou, and F. Nait-Abdesselem, “Energy-
Aware Fair Routing in Wireless Sensor Networks with Maximum Data
Collection,” in Proc. of IEEE ICC 2006, Istanbul, Turkey, Jun. 2006.

[12] C. K. Toh, “Maximum Battery Life Routing to Support Ubiquitous Mo-
bile Computing in Wireless Ad Hoc Networks,” IEEE Comm. Magazine,
Vol. 39, No. 6, Jun. 2001, pp. 138-147.

[13] F. Kelly, A. Maulloo, and D. Tan, “Rate Control for Communication
Networks: Shadow price, Proportional Fairness and Stability,” J. Oper.
Res. Soc., Vol. 49, No. 3, Mar. 1998, pp. 237-252.

[14] W. Ye, F. Ordez, “A Sub-gradient Algorithm for Maximal Data Extrac-
tion in Energy-limited Wireless Sensor Networks,” in Proc. of IEEE
Wirelesscom 2005, Maui, Hawaii, USA, Jun. 2005.

[15] L. Xiao, M. Johansson, and S. Boyd, “Simultaneous Routing and
Resource Allocation via Dual Decomposition,” IEEE Trans. Commun.,
Vol. 52, No. 7, Jul. 2004, pp. 1136-1144.

[16] J. Mo and J. Walrand, “Fair End-to-end Window-based Congestion
Control,” IEEE/ACM Trans. on Networking, Vol. 8, No. 5, Oct. 2000,
pp. 556-567.

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.


	Select a link below
	Return to Main Menu




