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Abstract

Data confidentiality is one of the most important con-
cerns in security of ad-hoc networks which have been
widely studied in recent years. In this paper, we consider the
public-key cryptographywhich is one of the simplest and vi-
able means to maintain data confidentiality. There are sev-
eral ways to distribute a public key. Flooding is an intuitive
approach to distribute each node’s public key. However, the
normal flooding approach is costly, and can cause MAC-
level contention in a dense region of nodes. Tree based
topology flooding can be appied to mitigate these problems.
The construction algorithm should use ideally only local in-
formation. In this paper, we propose a completely local-
ized algorithm called the Local Tree-based Reliable Topol-
ogy (LTRT) algorithm, which achieves both reliability and
efficiency. LTRT is a localized version of TRT that has 2-
edge connectivity. Each node can distribute its public key
to all other nodes in the network by LTRT. Simulation re-
sults show the efficiency of LTRT and its superiority over
other localized algorithms.

1 Introduction

Recent advances in wireless and mobile technologies
have fostered the development of ad-hoc networks. Secu-
rity of ad-hoc networks remains a major concern. Cryptog-
raphy is a viable means to secure ad-hoc networks, but how
to distribute the key remains a challenging issue.

The private-key distribution is an attractive means to
maintain data confidentiality. However, if a malicious node
acquires the key, the purpose of cryptography falters, and
hence several protocols have been proposed to secure distri-
bution of private keys. For example, distributed key agree-
ment protocols have been used for secure sharing of private
keys [1]. On the other hand, public-key distribution is sim-
pler because the key is used for encryption, but not for de-

cryption. To certify the validity of the participating node
from the key, the network must have a certificate author-
ity (CA), which however defeats the very nature of ad-hoc
networks.

In some cases, public-key cryptography without any cer-
tification can fulfill certain security demand. So, the ma-
jor emphasis for consideration is how to distribute the pub-
lic key in such cases. When each node knows the path to
any other node, an efficient broadcast scheme can be ap-
plied. Since the key distribution is always the first opera-
tion, a node cannot know a priori the topology of the net-
work. Hence, the most viable means is flooding. Since
flooding incurs high cost as mentioned earlier, this simple
implementation may lead to tremendous energy consump-
tion, and is thus not suitable for ad-hoc networks because
the battery lives of the nodes are limited. To reduce the
flooding cost, many topology control algorithms have been
proposed. These algorithms are generally localized, i.e.,
each node uses only the information that is one-hop away.
Among the localized algorithms, the most cost efficient
topology is the tree based topology. One such topology
is the Local Minimum Spanning Tree (LMST) [2] which
can be obtained by an MST-based localized algorithm. Al-
though LMST is cost-efficient, there is almost always only
one fixed path between every pair of nodes. So if there is a
link failure, the network will be split and some nodes will
not be able to get the distributed key.

In this paper, we propose the Local Tree-based Reliable
Topology (LTRT) algorithm which is motivated by LMST
and the Tree-based Reliable Topology (TRT) [3]. LTRT is
a localized version of TRT which guarantees 2-edge con-
nectivity. The objective is to acquire an efficient and reli-
able topology for flooding-based key distribution by using
LTRT.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews some related work. A brief overview of ex-
isting algorithms, LMST and TRT, are given in Section 3.
In Section 4, we introduce the LTRT algorithm and discuss
the properties of LTRT. Performance comparisons of LTRT
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with other existing algorithms are illustrated in Section 5.
Finally, Section 6 concludes the paper and presents the fu-
ture works.

2 Related works

Here, we briefly describe related works. There have been
a rich literature on public key management.

Zhou and Haas [4] proposed the method by using thresh-
old cryptography to distribute the CA functionality to sev-
eral nodes. Some specific nodes, called servers, store public
keys of all the nodes in the network, as well as are aware
of the public keys of other servers. They can establish se-
cure links among them. In [5], the authors proposed a trust
model for ad-hoc networks without an CA. In this model,
each node signs certificates for other nodes. Capkun et al.
[6] proposed a fully distributed self-organizing public key
management scheme.

In this paper, we focus on distributing the public key
in ad-hoc networks. We assume that once the public keys
have been successfully distributed, data confidentiality can
be guaranteed by cryptography.

3 Existing algorithms

In this section, we first review the LMST algorithm.
Since LMST is a 1-edge connected network, it has some
reliability deficiency. In order to apply the concept of TRT
to LMST in the next section, we will also briefly summarize
TRT.

3.1 LMST: Local Minimum Spanning
Tree

LMST is a “localized” algorithm to construct MST based
topology in ad-hoc networks by using only information of
the nodes which are one-hop away. Every node knows
its position by GPS and has its ID for identification. The
idea of LMST is simple. Each node calculates MST inde-
pendently from the information of one-hop nodes and only
keeps one-hop on-tree nodes as neighbors.

The procedure of constructing LMST is composed of
two phases. First, each node broadcasts a “Hello” message
which contains its ID and position by the maximal trans-
mission power and obtain the information of the one-hop
nodes. Each node then has its local graph in this phase. In
the next stage, each node applies Prim’s algorithm indepen-
dently to obtain its local MST and keeps its on-tree one-hop
nodes as its neighbors.

If every link has a unique weight, (i.e., different links
have different weights), the locally calculated MST is also
unique and the connectivity can be guaranteed [2]. The

topology of LMST may not be a spanning tree but may have
some redundant edges. LMST has several noteworthy fea-
tures. The node degree of any node is bounded by 6, that can
help reduce MAC-level contention and interference. The
resulting topology can be converted into the one with only
bi-directional links by removing all uni-directional links.

Note that the topology of the resulting LMST might be
split by a single link failure. This might limit its applica-
bility since the topology in an ad-hoc network should have
some redundancy because of its unsure links.

3.2 TRT: Tree-based Reliable Topology

In [3], a 2-edge connected network as Reliable Topol-
ogy (RT) and an algorithm to construct such a network by
combination of spanning trees have been proposed.

TRT is constructed as follows. Given G(V, N), a
connected network topology. First, calculate one of its
spanning trees, T (N, Ê). Remove all the links in Ê from
G(V, N), and denote the rest of network as G(N, E − Ê)
that consists of n (n ≥ 1) connected sub-networks
which are G1(N1, E1),G2(N2, E2),. . .,Gn(Nn, En).
Calculate T1(N1, Ê1),T2(N2, Ê2),. . .,Tn(Nn, Ên)
which are the spanning trees of G1(N1, E1),
G2(N2, E2),. . .,Gn(Nn, En), respectively. The
topology D(N, Ẽ) constructed by combining
T (N, Ê), T1(N1, Ê1), T2(N2, Ê2), . . . ,Tn(Nn, Ên) is
referred to as a Tree-based Reliable Topology (TRT).

The construction procedure of TRT is illustrated by
an example as shown in Figure 1. Given a network
G(N, E) as shown in Figure 1, we can construct one of its
TRTs, D(N, Ẽ), by combining T (N, Ê), T1(N1, Ê1), and
T2(N2, Ê2), where T (N, Ê) is one of the spanning trees
of G(N, E), and T1(N1, Ê1) and T2(N2, Ê2) are the span-
ning trees of G1(N1, E1) and G2(N2, E2), respectively,
which are the remaining networks after removing the links
in T (N, Ê) from G(N, E).

It can be observed that if n = 1, G(N, E − Ê) is still a
connected network, TRT is actually constructed by combin-
ing the two spanning trees of G(N, E). Authors in Refer-
ence [3] suggested to deploy minimum spanning tree (MST)
to construct TRT, i.e., in the process of constructing the
TRT, all the spanning trees are the minimum spanning trees
of the corresponding networks.

4 LTRT: Local TRT

In this section, we propose LTRT which is a localized
version of TRT. LTRT has the same reliability as TRT, i.e.,
LTRT is also a 2-edge connected network if the original net-
work is also 2-edge connected if the original network is i-
edge connected, where i ≥ 2. Also, the time complexity is
small.
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Figure 1. Construction of TRT

To simplify the discussion, consider a network in which
every node has the same transmission range rmax. Let the
network topology be represented by an undirected graph
G = (N, E), where N = {v1, v2, . . . , vn} is the set of
nodes and E is the set of links in the network G. A unique
ID is assigned for each node and each node can obtain its
own position in the network by GPS or a lightweight local-
ization technique for wireless networks. This position in-
formation is only used for calculating the link cost between
every two nodes, and it is not necessary if the link cost can
be calculated by reception of the broadcast. For illustrative
purposes, we assume every node uses GPS to acquire its
own position.

4.1 Construction of LTRT

LTRT can be easily constructed by applying the topol-
ogy construction phase of LMST two times. The procedure
of constructing LTRT is composed of four phases: infor-
mation exchange, first topology construction, link deletion,
and second topology construction.

1) Information Exchange: Each node broadcasts a
“Hello” message which contains its ID and position, and
obtains the information of its one-hop nodes.Each node ob-
tains its local graph Gu(Nu, Eu) in this phase.

2) First Topology Construction: Each node u applies
Prim’s algorithm independently to obtain its local MST
T 1

u(Nu, E1
u
′) and broadcast neighbors N ′(u) = {v|(u, v) ∈

E1
u
′}. Each node u can obtain all neighbors of v ∈ Nu

from the broadcast, and then it can fix the first topology
D1

u(Nu, E1
u). D1

u(Nu, E1
u) is an undirected graph con-

structed by eliminating unidirectional edges. This elimina-
tion of unidirectional edges does not destruct the connectiv-
ity of the network.

3) Links deletion: Each node u deletes the links in E 1
u

from its local graph Gu(Nu, Eu), resulting in the topology,
G2

u(Nu, Eu − E1
u).

Links Deletion

Information Exchange

2nd Topology Construction

1st Topology Construction

Figure 2. Operations of each phase

4) Second Topology Construction: Each node u applies
Prim’s algorithm to G2

u(Nu, Eu − E1
u) independently to

obtain its second local MST T 2
u(Nu, E2

u
′) and broadcast

neighbors N ′(v) = {v|(u, v) ∈ E2
u}. The local graph

G2
u(Nu, Eu − E1

u) may be separated in n graphs, but it is
sufficient to apply the Prim’s algorithm to one of the graphs
as long as it includes node u because the necessary infor-
mation is only the neighbor set of u and broadcast neigh-
bors N ′(u) = {v|(u, v) ∈ E2

u
′}. Each node then can fix

the second topology D2
u(Nu, E2

u) from its broadcast neigh-
bors by including only bidirectional edges. Finally, each
node u can decide its neighbor set N(u) = {v|(u, v) ∈
E1

u} ∪ {v|(u, v) ∈ E2
u}.

There are some noteworthy features in LTRT. LTRT is
an undirected graph. The bulk of the computation is due
to the cost of Prim’s algorithm, and so the computational
cost is very small. Only three broadcasts per node are re-
quired, i.e., low overhead. If the weight of any link has
the unique value, the choice on the minimum weight edge
e is unique, and thus the topology calculated by Prim’s al-
gorithm is unique; therefore we can always obtain unique
topology from LTRT.

When nodes join or leave the network, the topology will
be recalculated. However, it is not necessary for all the
nodes of the network to recalculate its topology because the
algorithm is localized. In such a situation, the nodes that are
one-hop away from the joining/leaving node start phase 2),
and nodes that are two-hop away proceed to phase 3) and
4). Hence, only nodes that are two-hop away or less from
the joining/leaving node need to recompute their topologies
when the network is changed.



4.2 2-edge connectivity

The topologies constructed in phase 2) or 4) are the same
as LMST. The connectivity of either of the resulting topolo-
gies is proved in [2]. It can be similarly shown that LTRT
has 2-edge connectivity.

Theorem 1: Given a 2-edge connected network
G(N, E), the LMST T (N, Ê), constructed in phase
2), LMSTs, T1(N1, Ê1),T2(N2, Ê2),. . .,Tn(Nn, Ên),
constructed in phase 4), and the LTRT, D(N, Ẽ),
constructed by combining T (N, Ê), T1(N1, Ê1),
T2(N2, Ê2),. . .,Tn(Nn, Ên), LTRT D(N, Ẽ) is also
2-edge connected.

Proof: We prove this by showing any edge {e} is not
an edge-cut of D(N, Ẽ). Assume an edge {e} is an edge-
cut of D(N, Ẽ) that splits D(N, Ẽ) into D1(N1, Ẽ1) and
D2(N2, Ẽ2) by removing {e}, but does not split G(N, E).
e ∈ Ê is obvious because T (N, Ê) is connecting all the
nodes and T (N, Ê) ⊂ D(N, Ẽ). However, there are some
edges {e1, e2, . . . , en} ∈ (E− Ê) that connect between the
set of N1 and N2 but are not the links of Ẽ, since G(N, E)
is 2-edge connected. Since the topologies constructed in
the second topology construction phase are connected, one
of e1, e2, . . . , en must be in one of Ê1, Ê2, . . . , Ên. This,
however, contradicts our assumption that {e} is the edge-cut
of D(N, Ẽ). Hence, none of the edges {e} is an edge-cut
of D(N, Ẽ), that is, D(N, Ẽ) is 2-edge connected.

In the simplest term, TRT is composed of spanning trees,
and LTRT is composed of topologies that include spanning
trees with some redundant edges. So LTRT is composed
of TRT with some redundant edges, that end up to have
the same reliability. This also shows that if the graph con-
structed in phase 2) and 4) is connected, the topology is
always 2-edge connected.

4.3 Complexity analysis

We show the time complexity of LTRT construction is
O(n log m), where n is the number of nodes which are one-
hop away and m is the number of links in the local network
Gu(N, E). It is the same as LMST.

In the information exchange phase, each node broadcasts
and obtains the information. In this phase, adding the neigh-
bors in the local graph costs O(n). Each node calculates the
length from the node positions to obtain link lengths in its
local graph, thus costing O(n2). If each node u calculates
only the link lengths between the neighbor node v and u and
broadcast its length, the cost can be lowered to O(n). In the
first topology construction phase, each node applies Prim’s
algorithm with complexity of O(m log n). If we employ
Fibonacci heap, the complexity is O(m + n logn). In the
links deletion phase, the deletion of a link from the network
is O(log n) because there are a maximum of n links for each

node. Since the node degree of any node is bounded by 6,
the number of manipulations is O(n). So, the deletion cost
is O(n log n). In the second topology construction phase,
the time complexity is, like the first topology construction,
O(m log n), or O(m+n logn) if Fibonacci heap is adopted.

As mentioned above, the minimum time complexity is
O(m + n logn). Since the cost of calculation is almost that
of Prim’s algorithm, the actual computational complexity is
rather low, and the algorithm can be easily applied.

5 Performance evaluation

Other localized algorithms have been proposed to con-
struct a 2-connected topology, but most of them have 2-
vertex connectivity which has stronger connectivity than 2-
edge connectivity. If a node is dropped, the topology has
to be recalculated, thus incurring large computational com-
plexity. Therefore, it is sufficient to employ 2-edge connec-
tivity, a weaker one, which leads to a low cost topology.

CBTC(α) [7] is 2-vertex connected if α ≤ π
3 . The

connectivity is proved in [8]. Fault-tolerant Local Span-
ning Subgraph (FLSSk) [9] is k-vertex connected. It uses
a greedy algorithm, and so the topology of FLSS is nearly
optimal. It was shown that the computational complexity is
O(m) if k ≤ 3. However, this does not include the sorting
cost of links which is O(m log m), and the actual computa-
tional complexity is much higher than that of LTRT.

In order to understand the effectiveness of our algorithm,
we evaluate the performance of LTRT against TRT, LMST,
CBTC(π

3 ), and FLSS2 algorithms via extensive simulations.
We generated a network where 100 nodes are randomly
placed in a square region. Each node has a maximum trans-
mission radius of 250[m]. The length of the square region
is 1000[m].

Figure 3 shows the topologies after applying respective
algorithms in the square 1000[m]. LTRT, the localized TRT,
acquires nearly the same topology as TRT. It can be found
that the topologies of both FLSS2 and LTRT are very close.

Table 1 shows the average node degree, average radius,
and average link length. The node degree is defined as the
number of neighbors of each node and is an indication of

Table 1. Simulation Result
Algorithm Degree Radius Link Length

NONE 16.70 250.00 162.24
LMST 2.05 88.67 70.38
CBTC 12.82 222.19 149.00
FLSS 3.88 126.53 88.91
TRT 3.96 121.88 86.86

LTRT 4.11 124.26 88.64
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(c) TRT (d) LTRT

(e) CBTC( π
3

) (f) FLSS2

Figure 3. The topologies derived under each
algorithm

the level of MAC interference. The average link length
and radius are directly linked to the flooding cost and en-
ergy consumption. These values are obtained by averaging
over 50 runs of simulations. Since LMST has only one-
connectivity, it yields small value in each measure. LTRT
outperforms CBTC( π

3 ), and it is almost the same as FLSS2

which is 2-vertex connected and near the optimal. Since
the computational cost of LTRT is much lower than that of
FLSS2, this simulation shows that LTRT achieves compa-
rable performance as that of FLSS2 but at a much lower
computational cost.

6 Conclusion and future works

Key distribution is one of the most important concerns
in secure ad-hoc networks. In this paper, we have proposed
the LTRT algorithm which is a localized version of TRT for
efficient and reliable key distribution by flooding. We have
evaluated the performance of LTRT through extensive simu-
lations, and showed that LTRT achieves comparable perfor-

mance as that of the near-optimal algorithm, but at a much
lower computational cost.

Our future work will further evaluate LTRT in more com-
plex scenarios by varying the node density and size of net-
work. We will next generalize LTRT to have k-edge connec-
tivity since k-edge connectivity may enhance the reliability
in networks with more unsettled link state.
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