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Abstract—Delay tolerant networks (DTNs) rely on the mobility
of nodes and sequences of their contacts to compensate for lackof
continuous connectivity and thus enable messages to be delivered
from end to end in a “store-carry-forward” way. Since each node
may also need to deliver out its locally generated message, in
addition to carrying and forwarding messages for other nodes,
the node may become more willing to forward its own message
rather than that of others when it encounters some node. This
kind of selfish behaviors may become much more significant
when the nodes are operating under both QoS requirements
(e.g., delivery delay requirements) and energy constraints. In
this paper, we analytically explore how this kind of selfish
behaviors will influence the delivery performance of the two-
hop relay in the challenging DTNs. In particular, a continuous
time Markov chain-based theoretical framework is developed
to model the complicated message delivery process. With the
help of the theoretical framework, closed-form expressions are
further derived for both the expected delivery delay and the
expected delivery cost, where the important node selfishness issue
is carefully incorporated into the analysis.

I. I NTRODUCTION

Delay tolerant networks (DTNs) are sparse and highly
mobile wireless ad hoc networks, where the transmission
opportunities come up and down from time to time, and no
contemporaneous end-to-end path may ever exist at any given
time instant [1]–[3]. Therefore, the “store-carry-forward” kind
of routing, which relies on the mobility of nodes and sequences
of their contacts to compensate for lack of continuous connec-
tivity and thus enable messages to be delivered from end to
end, becomes a natural routing option for the DTN routing
[4]–[6].

Among these “store-carry-forward” routing protocols, the
two-hop relay and its variants [3], [7] have become a class of
attractive routing protocols due to its efficiency and simplicity.
In the two-hop relay routing, the source transmits copies ofits
message to all mobiles (relays) it encounters; relays transmit
the message only if they come in contact with the destination.
Thus, as shown in the Fig. 1, a message travels at most two
hops to reach its destination.

The two-hop relay routing requires all nodes to forward
messages for each other in a cooperative and altruistic way.
Consequently, this kind of cooperation and mutually helping
routing inflict significant energy consumption and storage cost
on each node. Most studies in the literature have assumed that
in the message delivery process, nodes are willing to cooperate

Fig. 1. Illustration of the two-hop relay routing protocol,where the
destinationD receives a message either directly from the sourceS or from
one of then − 2 distinct relays.

with each other in a perfect way, like the [8]–[11]. In the real
world, however, nodes may act selfishly, in particular when
they are energy and storage resource constrained.

It is noticed that recently, some interesting works have
been done to address the important node selfishness issue.
Panagakiset al. in [12] experimentally examined the effect
of node cooperation in DTNs, where a node may choose to
probabilistically drop a newly received message or refuse to
forward a buffered message. This kind of individual selfishness
was further addressed in [13] by Karaliopouloset al., where
a specific group of selfish relay nodes are assumed. It was
further extended by Liet al. in [14] into the social selfishness
scenarios where there are two groups of relay nodes, and a
relay node has greater incentive to help forward messages from
the nodes in the same group, but less interests to forward the
messages from nodes of the other group [15], [16].

These works [12]–[14] suffered from the same limitation
that all of them considered a very simple network scenario
with only a single source-destination pair. Under such sce-
nario, all the other nodes (except the source and the destina-
tion) act as “pure” relays, and have only one kind of selfish
behavior, to either carry and forward messages for the source
or not. In the DTNs, however, there may simultaneously co-
exist multiple source-destination pairs (traffic flows). Each
node may act not only as a relay carrying and forwarding
messages for other nodes, but also as a source trying to deliver
out its locally generated message. Thus, a node may become
more willing to forward its own message rather than that of



others when it encounters some node. This kind of selfish
behaviors may become much more significant when the nodes
are operating under both QoS requirements (e.g., delivery
delay requirements) and energy consumption constraints. In
this paper, we focus on this kind of node selfishness and ana-
lytically explore how it will influence the delivery performance
of the two-hop relay in the challenging DTNs.

The main contributions of this paper are summarized as
follows.

• We focus on a network scenario where each node has
a locally generated traffic destined for some node and
also an incoming traffic originated from some other
node, and develop a continuous time Markov chain-based
theoretical framework to model the complicated message
delivery process.

• With the help of the theoretical framework, we further
derive closed-form expressions for both the expected
delivery delay and the expected delivery cost, where the
node selfishness regarding forwarding messages for itself
or for other nodes, is carefully incorporated into the
analysis.

• Finally, we provide extensive numerical results to explore
how the node selfishness and network size will influence
both the expected delivery delay and the expected deliv-
ery cost.

The rest of this paper is outlined as follows. Section II
introduces the system models. In Section III, we develop the
Markov chain-based theoretical framework and derive closed-
form expressions for both the expected delivery delay and the
expected delivery cost. We provide extensive numerical results
in Section IV and conclude this paper in Section V.

II. SYSTEM MODEL

We consider a delay tolerant network withn mobile nodes.
We assume that two nodes are able to communicate with
each other only when they are within reciprocal transmission
range. We also assume that the number of bits that can be
successfully transmitted during each contact duration between
any two nodes is fixed asw bits there.

We further assume that the node inter-meeting times, i.e., the
time elapsed between two consecutive contacts of a given node
pair, are exponentially distributed with inter-meeting intensity
λ. The validity of this assumption has been discussed in
[17], and it has been demonstrated to be fairly accurate for a
number of mobility models, like the Random Walker, Random
Direction, and Random Waypoint [11], [18], [19]. As shown
in the [17], the inter-meeting intensityλ can be determined
by

λ = c ·
ν · R

A
(1)

whereR refers to the transmission range of each node and is
small enough with respect to the network areaA, ν is the mean
relative velocity between nodes and the constantc = 1 (resp.
1.368) for the Random Direction (resp. Random Waypoint)
mobility model.

Fig. 2. Illustration of the queue structure at the buffer of node S, which
contains one local-queue for its locally generated traffic,andn − 2 parallel
relay-queues for traffic of other flows.

In order to fully capture the node selfishness regarding
forwarding traffic for itself or for other nodes, we assume
here a permutation traffic pattern [20], where each node has
a locally generated traffic destined for some node and also an
incoming traffic originated from some other node, i.e., each
node is not only the source of its own traffic flow but also the
destination of some other traffic flow. Thus, there are in total
n distinct flows inside the whole network.

Without loss of generality, we focus on a tagged flow and
denote its source and destination by nodeS and nodeD,
respectively. According to the two-hop relay [7], the nodeS
can also be a potential relay for othern − 2 flows (except
the two flows originated from and destined for itself). As
illustrated in the Fig. 2, we assume that theS maintainsn−1
individual queues at its buffer, one local-queue for storing
the messages that are locally generated and destined for the
nodeD, andn− 2 parallel relay-queues for storing messages
destined for othern− 2 nodes (excluding the nodeS andD).

For a tagged flow, when the sourceS encounters some
node (sayR) (rather than the destinationD), the S have
two choices: to act either as a source delivering toR copy
of messages in its local-queue, or as a relay delivering toR
messages in the relay-queue specified for theR. The former
choice expedites the delivery process of its own messages
(destined for nodeD), while the latter improves the message
delivery process of other flow (destined for nodeR). It is
notable that a node may become more willing to forward its
own message rather than that of others when it encounters
some node. This kind of selfish behaviors may become much
more significant when the nodes are operating under both QoS
requirements (e.g., delivery delay requirements) and energy
consumption constraints.

To characterize the impact of this kind of node selfishness
on the delivery performance, we assume that each time the
nodeS encounters some nodeR (rather thanD), the S will
act as a source with probabilityp (delivering its own messages
to nodeR), and act as a relay with probability1−p (delivering
to R messages destined for nodeR), 0 ≤ p ≤ 1. In order to
simplify the analysis, similar to the [13], [14], we assume that
for each flow, the source has only a single message of size
w bits to deliver to the destination, and thus each message
can be successfully transmitted during a contact duration.



III. M ARKOVIAN ANALYSIS

In this section, we first develop a Markov chain-based
theoretical framework to model the message delivery process
and derive some related basic results, then proceed to derive
closed-form expressions for the expected delivery delay and
expected delivery cost.

A. Markov Chain and Related Basic Results

For a tagged flow, the source nodeS will deliver out a
copy of its message with probabilityp when encountering a
relay node, and a relay node will forward this message with
probability 1 − p when encountering the destination node.
If we use the number of message copies in the network
(including the one at the source node) to denote a transient
state, the whole message delivery process can be modeled with
an absorbing CTMC (Continuous Time Markov Chain). Since
the source nodeS can deliver copies of its message to at most
n−2 distinct relay nodes, the corresponding CTMC is a finite-
state absorbing CTMC. We illustrate the transition diagramof
the Markov chain in the Fig. 3, where the stateA denotes
the absorbing state, i.e., the destination nodeD successfully
receives the message.

For a general transient statek, 1 ≤ k < n − 1, it may
transit to statek + 1 and stateA with a rate ofb1(k) and
b2(k), respectively, where

b1(k) = (n − k − 1)pλ (2)

b2(k) = (k − kp + p)λ (3)

Thus, for statek, the rate of transiting back to itselfb(k)
can be given by

b(k) = (np − 2kp + k)λ (4)

If we denote byS(k) the overall sojourn time inside a
general transient statek, 1 ≤ k ≤ n − 1, then we have the
following lemma.

Lemma 1:For a general transient statek, 1 ≤ k ≤ n − 1,
the sojourn timeS(k) follows an exponential distribution with
mean 1

b(k) , i.e.,

Pr(S(k) < x) = 1 − e−(np−2kp+k)λx (5)

Proof: Since there are two outgoing transitions from state
k, 1 ≤ k < n−1, i.e., the transitions to statek+1 and to state
A, we further assume that when in statek, the Markov chain
either transits to statek+1 after timeS1(k) or transits to state
A after timeS2(k). Thus, the overall sojourn timeS(k) can
be determined as

S(k) = min{S1(k), S2(k)} (6)

As indicated by the (2) and (3), theS1(k) and S2(k)
follow an exponential distribution with mean1

b1(k) and 1
b2(k) ,

respectively, i.e.,

Pr(S1(k) < x) = 1 − e−b1(k)x (7)

Pr(S2(k) < x) = 1 − e−b2(k)x (8)

Together with the (6), we have

Pr(S(k) < x) = Pr(S1(k) < x | S1(k) < S2(k))

=
Pr(S1(k) < x, S1(k) < S2(k))

Pr(S1(k) < S2(k))
(9)

Since

Pr(S1(k) < x, S1(k) < S2(k))

=

∫ x

0

b1(k)e−b1(k)tdt

∫ ∞

t

b2(k)e−b2(k)udu

=

∫ x

0

b1(k)e−(b1(k)+b2(k))tdt

=
b1(k)

b1(k) + b2(k)

(

1 − e−(b1(k)+b2(k))x
)

(10)

and

Pr(S1(k) < S2(k)) =
b1(k)

b1(k) + b2(k)
(11)

Substituting the (10) and (11) into the (9), it follows the
(5). It’s easy to further verify that the (5) also holds for the
case thatk = n − 1.

If we denote byp1(k) andp2(k) the transition probability
from statek to k + 1 and that from statek to A, respectively,
from the (2), (3) and (4), we can see that

p1(k) =
b1(k)

b(k)
=

(n − k − 1)p

np − 2kp + k
(12)

p2(k) =
b2(k)

b(k)
=

k − kp + p

np − 2kp + k
(13)

We further assume that when the Markov chain in the
Fig. 3 enters the absorbing stateA, there are in totalNd

message copies in the network. Notice that theNd message
copies include (resp. exclude) the copy at the source (resp.
destination) node. Thus, we have the following lemma.

Lemma 2:The pdf (probability distribution function) ofNd

can be given by

Pr(Nd = k) =
(n − 2)! · pk−1(k − kp + p)

(n − k − 1)! ·
∏k

j=1(np − 2jp + j)
(14)

where1 ≤ k ≤ n − 1.
Proof: Given Nd = k, we can see that the last transient

state before the Markov chain gets absorbed is the statek, i.e,
the Markov chain becomes absorbed along the path1 → 2 →
3 → · · · → k → A. Thus, we have

Pr(Nd = k) =
k−1
∏

j=1

p1(j) · p2(k) (15)

Substituting the (12) and (13) into the (15), it follows the
(14) after some basic algebraic operations.



Fig. 3. Transition diagram of the Markov chain for the two-hop relay with node selfishness. For a general transient statek, the corresponding transition
rates are listed at the bottom part of the figure.

B. Expected Delivery Delay and Expected Delivery Cost

With the help of the Markov chain framework and the
related basic results, we proceed to derive closed-form expres-
sions for the expected delivery delay and the expected delivery
cost in this subsection. We first introduce here the following
definitions for the delivery delay and delivery cost.

Definition 1: For a message at some source nodeS, the
delivery delay of this message is the time elapsed between the
time when theS starts to transmit this message and the time
when the destination nodeD receives this message.

Definition 2: For a message at some source nodeS, the
delivery cost of this message here is regarded as the total
number of transmissions this message takes to arrive at the
destination nodeD.

Notice that delivery cost includes the last transmission from
the sourceS (or some relay) to the destinationD. We denote
by Td andCd the delivery delay and delivery cost, respectively.
Thus, we have the following theorems about theE{Td} and
E{Cd}.

Theorem 1:The expected delivery delayE{Td} can be
determined as

E{Td} =

n−1
∑

k=1

Pr(Nd = k) ·

k
∑

j=1

1

b(j)
(16)

where thePr(Nd = k) andb(j) are given by the (14) and (4),
respectively.

Proof: We denote byLd(s) the Laplace-Stieltjes trans-
form of Td, s ≥ 0, thus we have

E{Td} = −
dLd(s)

ds

∣

∣

∣

s=0
(17)

Since

Ld(s) = E{e−Td·s}

=

n−1
∑

k=1

E{e−Td·s | Nd = k} · Pr(Nd = k) (18)

=

n−1
∑

k=1

E{e
−

∑

k

j=1
S(j)·s

| Nd = k} · Pr(Nd = k)

(19)

=
n−1
∑

k=1

f(s, k) · Pr(Nd = k) (20)

where

f(s, k) = E{e
−

∑

k

j=1
S(j)·s

| Nd = k} (21)

the (18) follows by conditioning on theNd, and the (19)
follows after substituting the(Td |Nd=k) =

∑k

j=1 S(j).
Notice that in the (20), as thePr(Nd = k) is given by the

(14), the only remaining issue for derivation of theLd(s) is
to derive thef(s, k).

Since theS(1), S(2), . . . , S(k) in the (21) are mutually
independent, we have

f(s, k) =
k

∏

j=1

E{e−S(j)·s} (22)

where

E{e−S(j)·s}

=

∫ ∞

0

e−s·x · b(j)e−b(j)xdx (23)

=
b(j)

s + b(j)
(24)

and the (23) follows after substituting the (5). Substituting the
(24) into the (22), we have

f(s, k) =
k

∏

j=1

(

1 +
s

b(j)

)−1

(25)

From the (17) and (20), we can see that

E{Td} =
n−1
∑

k=1

Pr(Nd = k) ·
(

−
df(s, k)

ds

∣

∣

∣

s=0

)

(26)

where
(

−
df(s, k)

ds

∣

∣

∣

s=0

)

=

( k
∑

j=1

(

1 +
s

b(j)

)−2 1

b(j)
·

k
∏

i=1,i6=j

(

1 +
s

b(i)

)−1
)

∣

∣

∣

s=0

(27)

=
k

∑

j=1

1

b(j)
(28)

and the (27) follows after substituting the (25).
Substituting the (28) into the (26), it follows the (16).



Theorem 2:The expected delivery costE{Cd} can be de-
termined as

E{Cd} =

n−1
∑

k=1

(n − 2)! · pk−1(k2 − k2p + kp)

(n − k − 1)! ·
∏k

j=1(np − 2jp + j)
(29)

Proof: As indicated by the Lemma 2, the Markov chain
will become absorbed from statek with probability Pr(Nd =
k). Notice that when the chain arrives at the statek, k − 1
transmissions in total are taken. Plus the last transmission from
statek to A, we can see that when the Markov chain gets
absorbed from statek, the corresponding delivery cost is also
k. Thus, theE{Cd} can be given by

E{Cd} =

n−1
∑

k=1

k · Pr(Nd = k) (30)

after substituting the (14), it follows the (29) after some basic
algebraic operations.

IV. N UMERICAL RESULTS

In this section, based on the Markov chain-based theoretical
framework, we proceed to quantify the delivery performance
of the two-hop relay with node selfishness, and explore how
the probabilityp will affect both theE{Td} and theE{Cd}.

As indicated in the (1), the parameterλ corresponds to
the contact rate between any two mobile nodes. In order
to examine the delivery performance under a wide range of
network scenarios, we adopted in total four different settings of
λ (contacts/hr) here, i.e.,λ = 0.37, 0.101, 0.051 and0.084.
The setting thatλ = 0.37 practically corresponds to nodes with
transmission range equal to50m moving at a speed uniformly
spread in[0.5, 2.5] m/sec according to the random direction
(random waypoint) model in a square area of 1 km side length
(circle of radius 1

π
km) [13]. The settings thatλ = 0.101,

0.051 and 0.084 [14] are obtained by average statistics of
theCambridgetrace dataset [21] using the calculation method
introduced in [22].

We first explore how theE{Td} and E{Cd} vary with
the probability p and summarize the corresponding results
in the Fig. 4. As shown in the Fig. 4a, for all the three
network settings there, as thep varies from 0 to 1, theE{Td}
first monotonically decreases down from the1

λ
, achieves the

minimum value atp = 0.50, and then monotonically increases
up to the 1

λ
. For the settings thatλ = 0.101, 0.051 and

0.084, when p = 0 (p = 1) we have aE{Td} of 9.901 hr,
19.608 hr and 11.905 hr, respectively; whenp = 0.50, a
minimum E{Td} of 1.350 hr, 4.440 hr and 2.175 hr is
achieved, respectively. A further careful observation of the
Fig. 4a indicates that theE{Td} is symmetric with the line
p = 0.50, i.e., theE{Td} achieved at the valuep is the same
as that of the value1 − p.

The Fig. 4b illustrates the relationship between theE{Cd}
and the probabilityp. It’s easy to observe that, theE{Cd}
monotonically increases from 1 ton2 as thep varies from 0
to 1. A further careful observation of the Fig. 4b indicates
that the sensitivity (increasing tendency) of theE{Cd} also
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Fig. 4. Delivery delay and delivery cost vs. probabilityp

varies with thep. Specifically, when0 ≤ p ≤ 0.5, the E{Cd}
increases up slowly; while asp varies beyond 0.5, theE{Cd}
rises up sharply. Combining with the symmetric property of
E{Td} observed from the Fig. 4a, we can see that whenp ∈
[0, 0.5], a higherp value achieves a smaller delivery delay but
unavoidably results in a higher delivery cost.

We further proceed to study how the number of nodesn,
will affect the E{Td} and E{Cd}. With the λ fixed asλ =
0.37, we consider three settings ofp (p = 0.1, 0.3 and 0.5)
and let then varies from 20 to 300. As shown in the Fig. 5a,
the E{Td} decreases quickly with then. For example, when
p = 0.1, the E{Td} of n = 200 is 0.705 hr, which is nearly
0.57 times that of then = 50 (1.245 hr); regarding the setting
that p = 0.3, the E{Td} of n = 200 is 0.483 hr, which is
nearly 0.54 times that of then = 50 (0.895 hr). This property
can be interpreted as that the increasing ofn provides more
chances for the source nodeS to deliver out copies for its
message and thus results in a smaller delivery delay.

We can see from the Fig. 5b that, for all the settings of
p (p = 0.1, 0.3 and 0.5) there, theE{Cd} monotonically
increases up with then. It is further noticed that the sensitivity
of the E{Cd} also varies with thep, i.e., theE{Cd} of a
biggerp value is much more sensitive to the variations ofn.
For example, as then varies from 20 to 300, theE{Cd} of
p = 0.1 increases from 2.098 to 7.404 by a factor of nearly
3.53 times; while for the settingp = 0.5, theE{Cd} increases
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Fig. 5. Delivery delay and delivery cost vs. number of nodesn

from 4.52 to 20.449 by a factor of nearly 4.52 times.

V. CONCLUSION

In this paper, we analytically evaluated the impact of
node selfishness on the delivery performance of the two
hop relay in DTNs. A continuous time Markov chain-based
theoretical framework was developed, based on which closed-
form expressions were further derived for both the expected
delivery delay and the expected delivery cost. Our numerical
results indicate that the simple rule ofp = 0.50 achieves the
minimum expected delivery delay, and whenp ∈ [0, 0.5], a
bigger p could achieve a better delivery delay performance
but unavoidably result in a higher delivery cost.
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