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Abstract—Two-hop relay is a class of attractive routing pro-
tocols for mobile ad hoc networks (MANETs) due to its effi-
ciency and simplicity. This paper extends the conventional two-
hop relay and proposes a more general group-based two-hop
relay algorithm with redundancy. In such an algorithm with
redundancy f and group size g (2HR-(f, g) for short), each
packet is delivered to at most f distinct relay nodes and can
be accepted by its destination if it is among the group of g
packets the destination is currently requesting. The 2HR-(f, g)
covers the available two-hop relay protocols as special cases, like
the in-order protocols (f ≥ 1, g = 1), the out-of-order protocols
with redundancy (f > 1, g = ∞) or without redundancy (f = 1,
g = ∞), and it enables a more flexible control of packet delivery
process to be made in the challenging MANET environment. A
general theoretical framework is further developed to explore
how the control parameters f and g affect the expected packet
delivery delay in an 2HR-(f, g) MANET, where the important
medium contention, interference and traffic contention issues
are carefully incorporated into the analysis. Finally, extensive
simulation and theoretical results are provided to demonstrate
the efficiency of the 2HR-(f, g) scheme and the corresponding
theoretical framework.

I. INTRODUCTION

Since the seminal work of Grossglauser and Tse [1], the
two-hop relay and its variants have become a class of attractive
routing protocols for mobile ad hoc networks (MANETs). In
the two-hop relay routing the source transmits packets to the
mobiles (relays) it encounters; relays transmit the packets only
if they come in contact with the destination. Thus, each packet
travels at most two hops to reach its destination.
For its efficiency and simplicity, the two-hop relay algorithm

has been widely employed in the MANETs. The algorithms
in [1]–[3] can be regarded as the out-of-order routing without
redundancy, where a packet has at most one copy and will
be accepted by its destination as long as it is “fresh” (never
received before). The two-hop relays in [4], [5] also adopt the
out-of-order reception but allow each packet to have multiple
copies (i.e., with redundancy). Recently, some new two-hop
relay algorithms have been proposed in [6]–[8] where each
packet should be received in-order at its destination. For a
detailed survey, please refer to the [8] and reference therein.
Notice that due to node mobility in a MANET, the meeting

time and thus the data transmission time between any two
nodes is actually very short, which significantly limits the
number of bits that can be delivered in such a transmission.

Therefore, in MANETs a message is usually divided into
multiple small fragments in the delivery process. For the
two-hop relay routing with out-of-order reception, an early
arrived message-fragment may need to wait a long time (if
not expired) before becoming useful, and each mobile node
should potentially carry an infinite buffer to accommodate all
possible arrivals, which may not be practical for the MANETs.
For the strict in-order reception ones, on the other hand, a lot
of precious reception chances may be wasted, resulting in a
significant reduction in throughput.
To have a more flexible control of packet delivery process

and a nice trade-off between strict in-order reception and
complete out-of-order reception, this paper proposes a gen-
eral group-based two-hop relay with redundancy. The main
contributions of this paper are summarized as follows.
• This paper proposes an 2HR-(f, g) algorithm in Sec-
tion II, where each packet is delivered to at most f
distinct relay nodes and can be accepted by its destination
if it is among the group of g packets the destination
is currently requesting. This algorithm covers all the
available two-hop routing protocols as special cases, like
the strictly in-order ones [6]–[8] (f ≥ 1, g = 1), the out-
of-order ones with redundancy [4], [5] (f > 1, g = ∞)
or without redundancy [1]–[3] (f = 1, g =∞).

• We further develop a general Markov chain-based the-
oretical framework in Section III to model the message
delivery process and explore how the f and g would affect
the expected packet delivery delay. By setting g = 1, our
framework reduces to some available models developed
for two-hop relay [9]–[12].

• With the help of the theoretical framework, in Section III,
closed-form expressions are developed for the packet de-
livery delay with a careful consideration of the important
medium contention, interference and traffic contention is-
sues. Finally, extensive simulation and theoretical results
are provided in Section IV for validation of the new relay
scheme and the theoretical framework.

II. THE 2HR-(f, g) ALGORITHM AND TRANSMISSION
SCHEDULING

A. System Models
The network we consider in this paper consists of n mobile

nodes inside a unit square, which is evenly divided into m×m



cells. We focus on a slotted system and a fast mobility scenario
[13], where only one-hop transmissions are possible within
each time slot, and the total number of bits transmitted per
slot is fixed and normalized to 1 packet here. The nodes
independently roams from cell to cell and follows the bi-
dimensional i.i.d. mobility model [6]. At the beginning of each
time slot, each node independently and uniformly selects a
destination cell among all m2 cells and stays in it for the
whole time slot. The protocol model with guarding factor Δ
is adopted as the interference model [14]. We further assume
a permutation traffic pattern in the saturated case, where each
node is a source and at the same time a destination of some
other node, and each source node always has packets waiting
for delivery.

B. The 2HR-(f, g) Algorithm
Since each node can be a potential relay for other n−2 flows

(except the two flows originating from and destined for itself),
we assume that each node maintains n individual queues at its
buffer, one local-queue for storing the packets that are locally
generated at the node and waiting for copy-distribution, one
already-sent-queue for storing packets whose f replicas have
already been distributed but reception status are not confirmed
yet (from destination node), and n − 2 parallel relay-queues
for storing packets of other flows (one queue per flow).
For each flow, the source node divides packets waiting at

the local-queue into consecutive groups, with g packets per
group, and labels each packet P with a send group number
SG(P ) and sequence number SN(P ) (1 ≤ SN(P ) ≤ g),
so that the packet P can be efficiently retrieved from the
queue buffers using the tag (SG(P ), SN(P )). Similarly, the
destination node maintains a request group number RG and
indicator bits IN . The IN is a g-bit binary and used to
record the reception status for packets of group RG, with
IN&Bi = 0 indicating that the ith packet of group RG has
already been received, otherwise not yet, where the Bi is a
g-bit binary with all bits set as 0 except the ith bit.
Each packet is delivered to at most f distinct relay nodes,

while a relay node can carry at most one “fresh” packet from
a particular group. A packet is called “fresh” iff none of its
duplicate versions has been received by the destination. Given
that a relay is carrying a packet of some group, if the packet
is “fresh”, then the relay is called a fresh relay node for the
concerned group, otherwise an eligible relay candidate.
Without loss of generality, we focus on a tagged flow and

denote its source node and destination node as S and D, re-
spectively. Then the 2HR-(f, g) algorithm can be summarized
as follows.
The 2HR-(f, g) Algorithm: For the tagged flow, every time

the S gets a transmission opportunity, it operates as follows:
Step 1: (Source-to-Destination) Check if the node D is

among its one-hop neighbors. If so, it initiates a handshake
with the D to get the RG and IN . Then it transmits a fresh
packet directly to the D, which is selected as follows: it first
checks packets in its local-queue, i.e., whether the head of
its local-queue packet Ph is eligible, if not it continues to

check the packet waiting right behind Ph; if neither of the
two packets is eligible, it tries to retrieve some fresh packet
from the already-sent-queue.
Step 2: Otherwise, if the node D is not among the one-

hop neighbors of S, the node S randomly chooses one of the
following two operations to perform:
• (Source-to-Relay) It first randomly selects one node (say

R) from its current one-hop neighbors, then initiates a
handshake with R to check whether the R is an eligible
relay candidate. If so, it delivers a new copy of Ph to the
R; otherwise it remains idle for this time slot.

• (Relay-to-Destination) It acts as a relay and randomly
selects one node (say V ) as the receiver from its one-
hop neighbors. It first initiates a handshake with the V to
get the RG(V ) and IN , then checks in its relay-queue
specified for the V whether there exists a fresh packet
of group RG(V ). If so, it delivers this packet to the V ;
otherwise it remains idle for this time slot.

Notice that in the above Source-to-Relay transmission, every
time the S sends out a copy of Ph it checks whether f copies
of Ph have already been delivered. If yes, it puts Ph to the end
of the already-sent-queue and then moves ahead the remaining
packets in the local-queue. At the relay node, the Ph is put
at the end of its relay-queue dedicated to the node D. Thus,
each packet may have at most f +1 copies (including the one
in the already-sent-queue of its source node).
Remark 1: By proper setting of the two control parameters,

i.e., redundancy f and group size g, the 2HR-(f, g) algorithm
is able to cover all the available two-hop relays as special
cases, like the out-of-order ones with redundancy [4], [5] (f >
1, g = ∞) or without redundancy [1]–[3] (f = 1, g = ∞),
and the strictly in-order ones [6]–[8] (f ≥ 1, g = 1).
Remark 2: In the 2HR-(f, g) algorithm, if the destination

node D is requesting for group i, any fresh packet belonging
to the group i is eligible for reception. However, it will start
to receive packets of the group i + 1 only after all packets of
the group i have been received. It’s easy to see that, the inter-
group packet reception at node D is strictly in-group-order
while the intra-group packet reception is totally out-of-order.
Thus, the packet delivery process can be flexibly controlled
by the two parameters f and g.

C. Transmission Scheduling
We consider a local transmission scenario, in which a node

in some cell can only send packets to the nodes in the same cell
or its eight adjacent cells. Two cells are called adjacent if they
share a common point. Thus, the maximum distance between a
transmitting node (transmitter) and a receiving node (receiver)
is
√

8/m, so we set the communication range as r =
√

8/m.
Due to the wireless interference, only cells that are sufficiently
far away could simultaneously transmit without interfering
each other. To support as many simultaneous transmissions
as possible, similar to the “equivalence class” in the [15] we
define here the “concurrent-set”.
Concurrent-set: As illustrated by the shaded cells in Fig. 1,

a concurrent-set is a subset of cells in which any two cells have



Fig. 1. An example of a concurrent-set of cells with α = 4. The cells are
divided into 16 different concurrent-sets and the shaded cells all belong to
the same concurrent-set, i.e., the concurrent-set 1. The distribution of all the
remaining nodes in the unit square is not shown for simplicity.

a vertical and horizontal distance of some multiple of α cells,
and all the cells there can transmit simultaneously without
interfering each other.
To guarantee the simultaneous transmissions in a

concurrent-set without interfering each other, the parameter α
should be set properly. As shown in the Fig. 1, suppose that
during some time slot, the node V is scheduled to receive
a packet. According to the definition of “concurrent-set”,
we know that except the transmitting node of V , another
transmitting node (say node K) in the same concurrent-
set is at least (α − 2)/m away from V . The condition
that K will not interfere with the reception at V is that,
(α − 2)/m ≥ (1 + Δ) · r. By substituting r =

√
8/m, we

obtain that α ≥ (1 + Δ)
√

8 + 2. As α is an integer and
α ≤ m, we set

α = min
{�(1 + Δ)

√
8�+ 2,m

}
where �x� returns the smallest integer not less than x.
Notice that each cell will become active (i.e., get transmis-

sion opportunity) in every α2 time slots. If there are more
than one node inside an active cell, a transmitting node is
selected randomly from them. The selected node then follows
the 2HR-(f, g) algorithm for packet transmission.

III. THE MARKOV CHAIN-BASED FRAMEWORK AND
EXPECTED PACKET DELIVERY DELAY

A. A Markov Chain-based Theoretical Framework

For a tagged packet group at the source node S, we define
a three-tuple (i, j, k), which denotes the state that the S is
delivering the ith (1 ≤ i ≤ f ) copy for the jth (1 ≤ j ≤ g)
packet and the destination node D has received k (0 ≤ k < g)
packets. We further use (∗, ∗, k) to denote the state that the S
has already finished copy distribution for packets of the tagged
group while the D has only received k (0 ≤ k < g) packets
of them. Then according to the 2HR-(f, g) algorithm, for any
node pair S and D in state (i, j, k) at some time slot, only
one of the following transmission cases will happen in the
next time slot.

(a) transitions under case SR (b) transitions under case RD

(c) transitions under case SR+RD (d) transitions under case SD

Fig. 2. The transition diagram of the state (i, j, k), where 1 ≤ i ≤ f ,
1 ≤ j ≤ g and 0 ≤ k < g.

• (case SR) source-to-relay transmission only, i.e., the S
successfully delivers the ith copy to a new relay while
none of the relays delivers a fresh packet to the D;

• (case RD) relay-to-destination transmission only, i.e.,
some relay node successfully delivers a fresh packet to
node D while S fails to deliver out the ith copy to a new
relay node;

• (case SR+RD) both source-to-relay and relay-to-
destination transmissions, i.e., these two transmissions
happen simultaneously;

• (case SD) source-to-destination transmission, i.e., the S
successfully delivers out a fresh packet to the D.

Thus, the packet delivery process of the tagged group can
be modeled as a discrete-time finite-state absorbing Markov
chain. As indicated in [9], [11], it is tough to accurately model
the delivery process of even a single packet when f > 1 and
g = 1, the general settings of f and g here makes this task
much more difficult.
The first challenging task is to define the transitions among

neighboring transient states. As shown in the Fig. 2, for a
general state (i, j, k), even under the same transmission case
(SR, RD, SR+RD or SD), the target state varies significantly,
which depends not only on the concrete values of i, j and k,
but also on the reception status of the jth packet, i.e., IN&Bj .
Based on the observation that in a large MANET, the

probability of source-to-destination transmission is negligible
when in comparison with that of source-to-relay or relay-to-
destination transmission, and in order to simplify the analysis,
we make the following assumption:
Assumption 1: We assume that for any state (i, j, k) where

1 ≤ i ≤ f , 1 ≤ j < g and 0 ≤ k < j, the target state under
the transmission case SD is the state (1, j + 1, k + 1).
Notice that the only simplification by the Assumption 1 is

to neglect the case of IN&Bj = 0 when k < j < g in
Fig. 2d. Obviously, this simplification slightly “slows down”
the absorbing speed of actual delivery process. In light of
the fact that Pr(A ∩ B) ≤ Pr(A) where Pr(A) denotes
the probability of event A, the probability of this “slowing
down” is much smaller than that of source-to-destination



(a) transition diagram of states where k = 0

(b) transition diagram of states where 1 ≤ k ≤ g − 2

(c) transition diagram of states where k = g − 1

Fig. 3. Transition diagram of the Markov chain for the general 2HR-(f, g)
algorithm. For each transient state, the transition back to itself is not shown
for simplicity.

transmission. Thus, the Assumption 1 is reasonable and the
developed theoretical framework is ensured justifiable.
Another challenging task is to derive the exact transition

probabilities for each transient state, which depend on the ac-
tual number of fresh relay nodes and eligible relay candidates.
The main reason is due to the complicate network dynamics
during the delivery process, where a fine-grained definition
of transient state may help generate an accurate derivation
for transition probability, but unavoidably results in a steep
increase in the size of its state space. Thus, in order to keep
the Markov chain tractable and derive closed-form results, we
use the three-tuple (i, j, k) to denote a transient state.
We further denote by (a, t) the tth absorbing state, t ∈

[1, 2f ], and now we are ready to illustrate the transition
diagram of the absorbing Markov chain. As indicated in the
Fig. 3, there are g rows of transient states, with Lk transient
states in the kth row where

Lk =

{
(g + 1− k)f if 1 ≤ k ≤ g − 1

g · f + 1 if k = 0
(1)

Remark 3: As shown in the Fig. 3, the Markov-chain based
framework achieves the minimal size of state space. Specifi-
cally, there are β transient states

β =
f

2
(g2 + 3g − 2) + 1 (2)

and 2f absorbing states in the absorbing Markov chain, which
depends only on the control parameters f and g. By setting
g = 1, our framework reduces into the models developed in
the [9]–[12].
Lemma 1: For the tth transient state in the kth row, k ∈

[1, g − 1], the number of corresponding fresh relay nodes is
lower bounded by lr and upper bounded by ur where

lr = t− f (3)
ur = t− t%f (4)

Lemma 2: For the tth transient state in the kth row, k ∈
[1, g − 1], the number of corresponding eligible relay candi-
dates is lower bounded by lo and upper bounded by uo where

lo = n− 2− t− (k − 1)f (5)
uo = n− 2− t + f (6)

B. The Expected Packet Delivery Delay
Recall that the performance metric of interest is the expected

packet delivery delay under the general 2HR-(f, g) algorithm,
we denote it as E{Tp} and derive closed-form expressions for
the E{Tp} in this subsection.
Definition 1: For any packet group (say group i) at the

source node S, the delivery delay of packet group i is the
time elapsed from the time slot when the S moved the first
packet of group i into the head-of-line at its local-queue, to
the time slot when the destination node D received the last
packet of group i, given that RG(D) = i.
If we denote by T (f, g) the delivery delay of a packet group

under the 2HR-(f, g) relay algorithm, then we have

E{Tp} =
E{T (f, g)}

g
(7)

Before presenting our main analytical results, we first provide
the analysis of some basic probabilities.
Lemma 3: For a time slot and one given source node, we

use p1 and p2 to denote the probability that the source conducts
a Source-to-Destination transmission and the probability that
the source conducts a Source-to-Relay or Relay-to-Destination
transmission, respectively. Then we have

p1 =
1

α2

(
9n−m2

n(n− 1)
−

(
1− 1

m2

)n−1
8n + 1−m2

n(n− 1)

)
(8)

p2 =
1

α2

(
m2 − 9

n− 1

(
1−

(
1− 1

m2

)n−1)
−

(
1− 9

m2

)n−1)
(9)

Lemma 4: For a time slot and one given source node S
which is delivering copies for some packet group i, given
that there are t1 fresh relay nodes of group i, t2 eligible
relay candidates and RG(D) = i, we use Pr(t1), Pd(t2) and
Ps(t1, t2) to denote the probability that the destination node
D will receive a fresh packet, the probability that the S will
successfully deliver out a copy to some new relay in the next
time slot and the probability of simultaneous source-to-relay
and relay-to-destination transmissions in the next time slot,
respectively. Then we have

Pr(t1) = p1 +
t1

2(n− 2)
p2 (10)

Pd(t2) =
t2

2(n− 2)
p2 (11)

Ps(t1, t2) =
t1t2(m

2 − α2)

4m2α4

n−5∑
k=0

(
n− 5

k

)
h(k)

·
{ n−4−k∑

t=0

(
n− 4− k

t

)
h(t)

(
1− 18

m2

)n−4−k−t
}
(12)



where

h(x) =
9
(

9

m2

)x+1 − 8
(

8

m2

)x+1

(x + 1)(x + 2)
(13)

The proofs of Lemma 1, 2, 3 and 4 are omitted here due to
space limit, and please refer to the [16] for proofs.
Based on the Markov chain-based theoretical framework

developed in the Section III-A, we are now ready to derive
closed-form expressions for the E{Tp}.
As there are g rows of transient states in the Markov chain,

we index these transient states sequentially using 1, 2, . . ., β,
first from left to right then from top to down. Let random
variable bi denote the time it takes the chain to become
absorbed given that the chain starts in the ith transient state
(1 ≤ i ≤ β). Thus, the T (f, g) can be determined as

T (f, g) = b1 (14)

Let N denote the fundamental matrix of the Markov chain
in the Fig. 3. Note that the matrix N is of size β × β, and
from the (2), it’s easy to see that as the parameter f (resp. the
parameter g) increases by a factor of t, the β increases by a
factor of nearly t (resp. by a factor of nearly t2). Thus, it is
hard to directly derive the N for general settings of f and g.
Here we instead divide the matrix N into g-by-g blocks

with blocks in the kth (1 ≤ k ≤ g) row corresponding to
transient states in the (k − 1)th row of the Markov chain.
Based on this block partition, the ij-entry Ntk(i, j) of the tk-
block Ntk can be regarded as the expected number of times
in the jth transient state of the (k − 1)th row given that the
chain starts from the ith transient state of the (t − 1)th row.
Therefore, given that the chain starts in the state (1, 1, 0) (i.e.,
i = 1, t = 1), we have

E{b1} =

g∑
k=1

Lk−1∑
j=1

N1k(1, j) (15)

Combining with the (7) and (14), it follows

E{Tp} =
1

g

g∑
k=1

Lk−1∑
j=1

N1k(1, j) (16)

The (16) says that in order to derive the E{Tp}, we need
to first derive the matrix N. Since

N = (I−Q)
−1 (17)

where the Q is the β-by-β matrix defined for transition
probabilities among transient states in the canonical form of
the transition matrix [17].
The derivations of the matrix Q and (I−Q)

−1 are omitted
here, and please refer to the [16] for details.

IV. NUMERICAL RESULTS
A. Simulation Setting
A simulator in C++ was developed to simulate the packet

delivery process in a 2HR-(f, g) MANET, which is now
available at [18]. The simulated expected delivery delay was

TABLE I
COMPARISON BETWEEN SIMULATION AND THEORETICAL RESULTS FOR

MODEL VALIDATION UNDER THE SETTING OF m = 8, n = 100,
SIMULATED / THEORETICAL

f\g 1 6 8 12
1 908.3/908.1 859.2/859.1 841.5/841.8 810.1/810.3
2 891.9/892.3 827.8/828.2 806.7/807.7 770.9/773.2
3 880.7/881.2 817.7/819.1 798.2/801.3 767.5/774.6
4 871.2/873.5 817.5/821.6 802.8/809.1 780.5/794.3
5 868.9/868.2 824.1/829.6 813.4/822.9 799.1/819.7
6 864.5/864.6 831.2/839.4 824.4/837.7 817.1/843.0
7 862.2/862.1 838.7/848.9 834.7/850.9 831.5/861.3
8 859.9/860.5 845.4/857.1 843.0/861.6 842.9/874.8

calculated as the average value of 102 batches of simulation
results, where each batch consists of 104 random and inde-
pendent simulations.

B. Theoretical vs. Simulated Results
To verify the theoretical framework, extensive simulations

were conducted under the setting of (m = 8, n = 100).
Here only four scenarios (g = 1, 6, 8, 12) are included, and
the results of other scenarios can be easily obtained by our
simulator as well [18]. The corresponding simulation and
theoretical results are summarized in the Table. I. Notice
that the scenarios of g = 1 and g = 12 correspond to the
strict in-order reception and complete out-of-order reception,
respectively.
The Table. I indicates clearly that the simulation results

match nicely with the theoretical ones, so our framework can
be used to efficiently model the packet delivery process. A
further careful observation of Table. I shows that there is still
a very small gap (≤ 5%) between the simulation results and
theoretical ones. This gap is mainly due to the following two
reasons. The first one is that the simplification adopted in the
Assumption 1 slightly “slows” down the absorbing speed of
the Markov chain, and thus results in a higher absorption time
(i.e., delivery delay). The other reason is that in the definitions
of Qk and Q

′

k, we applied the lower-bound (3) and (5) (rather
than the actual number) of fresh relay nodes and eligible relay
candidates, which made the theoretical results shift slightly
from simulation ones.

C. Expected Delivery Delay vs. Control Parameters
Based on the theoretical framework, the Fig. 4 illustrates

how expected delivery delay E{Tp} varies with f , g and n. It
is interesting to note that in the Fig. 4a, for each setting of n,
there exists an optimum value of redundancy f which achieves
the minimum expected delivery delay E{Tp}. For example,
when n = 250, a minimal E{Tp} of 1511.17 is achieved at
f = 5; for the case that n = 600 (resp. n = 1000), a minimal
expected delivery delay of 3110.11 (resp. 5311.75) is achieved
at f = 7 (resp. f = 8).
The Fig. 4b shows the relationship between the expected

delivery delay E{Tp} and group size g. We can see from the
Fig. 4b that when the number of nodes n is much bigger
than the g · f , the E{Tp} decreases as the g increases up.
For example, when n = 600, 1000, the E{Tp} monotonically



(a) E{Tp} vs. f (b) E{Tp} vs. g (c) E{Tp} vs. n

Fig. 4. expected delivery delay vs. control parameters

decreases as the g increases from 1 up to 24. However, for the
case that n = 250, as the g varies from 1 to 24, the E{Tp} first
decreases, achieves the minimal value of 1833.77 at g = 10,
and then gradually increases up to 2109.76 at g = 24.
When the parameters f , g are fixed as f = 10, g = 16,

we can see from the Fig. 4c that there exists an optimum
value of n which minimizes the E{Tp}. For example, when
m = 32 (resp. m = 40), the minimal E{Tp} of 2195.62 (resp.
2408.41) is achieved at n = 350 (resp. n = 400). The Fig. 4c
also indicates that the n and thus the average node density
(n/m2) can significantly affect the E{Tp}. For example, when
m = 24, the E{Tp} of the n = 1000 is 4139.83, which is
nearly 1.69 times as that of the n = 500 (2452.83 there).

V. CONCLUSION
This paper proposed a general 2HR-(f, g) algorithm for

packet transmission in MANETs, which covers the available
two-hop relay algorithms as special cases. A Markov chain
theoretical framework was further developed for performance
modeling of the new relay algorithm, based on which closed-
form expressions for the expected packet delivery delay were
derived. Extensive simulation and theoretical studies indicate
that the theoretical framework is very efficient in performance
modeling for the 2HR-(f, g) algorithm, and the new relay
algorithm enables a flexible performance trade-off to be made
in a large range through a proper setting of parameters f and
g.
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