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Abstract—Delay tolerant networks (DTNs) are sparse and
highly mobile wireless ad hoc networks, where no contempora-
neous end-to-end path may ever exist at any given time instant,
and thus the “store-carry-forward” kind of schemes becomes
a natural routing option. A lot of models have been proposed
to analyze the unicast performance of such routing schemes in
the DTNs, while few works consider the multicast scenario. In
this paper, we develop a general continuous time Markov chain-
based theoretical framework to characterize the complicated
message delivery process of the DTN multicast scenarios, based
on which analytical expressions are further derived for both
the expected delivery delay and expected delivery cost. The
developed theoretical framework is general in the sense that:
1) it can be used to analyze the DTN multicast performance
under the common “store-carry-forward” routing schemes; 2)
it can also be used for the common mobility models; 3) it
covers some available models developed for the DTN unicast as
special cases. We then apply the theoretical framework to explore
the delivery performance of two popular routing schemes, the
epidemic routing and the two-hop relaying.

I. I NTRODUCTION

Delay tolerant networks (DTNs) are sparse and highly
mobile wireless ad hoc networks without infrastructure, where
two mobile nodes can transmit with each other only when they
are within reciprocal transmission range. Since the transmis-
sion opportunities between nodes come up and down from
time to time, no contemporaneous end-to-end path may ever
exist at any given time instant [1]–[3]. The traditional route-
based routing schemes fail in the DTNs, as they need to
establish a route path from the source to the destination and
require the simultaneous availability of a number of links.

The “store-carry-forward” kind of routing schemes, which
relies on the mobility of nodes and sequences of their contacts
to compensate for lack of continuous connectivity and thus
enables messages to be delivered from end to end, becomes
a natural option for the DTN [4]–[6]. One common feature
of these routing schemes is to employ multiple relay nodes
and disseminate a message copy to each relay [3], [7]. Since
multiple relay nodes in the network will carry the copies of
a message and the destination node can receive the message
from any of them, the overall delivery performance is im-
proved.

Among the “store-carry-forward” class of routing schemes,
the epidemic routing [8], [9] and two-hop relaying routing

[10]–[12] are two typical routing choices. The message de-
livery process under the epidemic routing is similar to the
spread of infectious diseases [13], [14], where a mobile node
carrying the message keeps on infecting any other node it
meets by sending out a message copy, and the newly infected
node will also behave similarly to infect other nodes. Finally,
the destination node receives the message when it encounters
an infected node. In the two-hop relaying algorithm [10]–[12],
the message delivery process is divided into two phases. In the
phase 1, the source node delivers a message copy to each relay
node it meets; in the phase 2, one of the relay nodes carrying
the message copies delivers the message to the destination.
Since the source node will directly transmit the message to
the destination once such transmission opportunity arisesup,
the message travels at most two hops to reach its destination.

Currently, a lot of models have been proposed to analyze the
routing performance of the DTNs, like the ODE (ordinary dif-
ferential equation) model developed for the epidemic routing
[9], and the Markov chain models developed for the two-hop
relaying [15]–[19]. One common limitation of these models
is that they are developed for the unicast scenario, so we can
not apply them to analyze the DTN routing performance under
multicast scenario. Since the multicast is also an important
traffic pattern for the future DTNs [20], in this paper we
develop a general theoretical framework to analyze the DTN
routing performance under the multicast scenarios.

The main contributions of this paper are summarized as
follows.

• We develop a general and continuous time Markov chain-
based theoretical framework to characterize the compli-
cated message delivery process of the DTN multicast
scenario. The developed framework is general in the
sense that: it can be used to analyze the DTN multicast
performance under the common “store-carry-forward”
routing schemes, and can also be used for the common
mobility models. Our framework can also cover the
available models developed for the DTN unicast under
the two-hop relaying [15]–[18] as special cases.

• Based on the Markov chain theoretical framework, ana-
lytical expressions of both the expected message delivery
delay and expected message delivery cost are then derived
for the packet delivery performance analysis under the



multicast scenario.
• We further adopt the epidemic routing and the two-hop

relaying as examples to illustrate how the packet delivery
performance analysis of a specified routing algorithm
can be performed based on our theoretical framework.
Extensive numerical results are also provided to explore
how the number of relay nodesn and the number
of destination nodesk will affect packet the delivery
performance there.

The rest of this paper is outlined as follows. Section II
introduces the system models. In Section III, we develop the
continuous time Markov chain-based theoretical framework
and derive analytical expressions for both the expected deliv-
ery delay and the expected delivery cost under the epidemic
routing and the two-hop relaying. We provide extensive numer-
ical results in Section IV and conclude this paper in SectionV.

II. SYSTEM MODELS

Throughout this paper, we consider a DTN with one source
node,k destination nodes, and othern − 1 relay nodes. In
such a network, only the source node has traffic to deliver to
the k destination nodes, and a destination node will not help
forward its received traffic; the relay nodes have no traffic to
deliver or receive and thus will act as pure relays.

We assume that all then + k nodes move within a closed
region according to the commonly adopted mobility models
such as Random Walk model, Random Direction model or
Random Waypoint model. Each node has limited transmission
ranger such that the network is sparse and disconnected. For
any two nodes, they can communicate to each other only when
they are within reciprocal transmission range, and the number
of bits that can be successfully transmitted during each contact
duration between them is fixed asw bits there.

We further assume that the occurrence of the contacts be-
tween any node pair follows Poisson distribution, i.e., thenode
inter-meeting times (the time elapsed between two consecutive
contacts of a given node pair) are exponentially distributed
with inter-meeting intensityλ. This assumption has been
validated in [21] and demonstrated to be fairly accurate fora
number of mobility models, like the Random Walk, Random
Direction and Random Waypoint, and it has also been widely
adopted in the literature, like the [15]–[19], [22]–[25].

As shown in the [21], the inter-meeting intensityλ between
any node pair can be determined as

λ = c ·
ν · r

A
(1)

wherer refers to the transmission range of each node and is
small enough with respect to the network areaA, ν is the mean
relative velocity between nodes and the constantc = 1 (resp.
1.368) for the Random Direction (resp. Random Waypoint)
mobility model.

In order to simplify the analysis, similar to the [15]–[18],
[22], [23], we assume that the source has only a single message
of size w bits to deliver to thek destinations, and thus
the message can be successfully transmitted during a contact
duration.

(a) Transition diagram with0 ≤ j < k−
1

(b) Transition diagram withj =
k − 1

Fig. 1. Transition diagram of a general transient state(i, j), where the
r0(i, j) denotes the transition rate back to state(i, j), and ther1(i, j) and
r2(i, j) denote the transition rates of state(i, j) under the RI case and the
DI case, respectively.

III. M ARKOVIAN ANALYSIS

In this section, we first develop a general Markov chain-
based theoretical framework to characterize the complicated
message delivery process for the multicast in DTNs, then
apply it to derive the expected delivery time and the expected
delivery cost for both the epidemic routing and the two-hop
relaying.

A. A Markov Chain-based Theoretical Framework

It is observed that one common feature of the “store-carry-
forward” routing schemes is to employ intermediate relay
nodes for message delivery. Based on this observation, we can
denote by(i, j) a transient state during the message delivery
process, where thei andj denote the number of infected nodes
(including the source node but excluding the destination nodes)
and the number of infected destination nodes at the current
time instant, respectively. Then we can see that,1 ≤ i ≤ n
and0 ≤ j ≤ k − 1. Notice that since state(t, k − 1) denotes
that there are alreadyk − 1 infected destination nodes, we
can further denote by(a, t) an absorbing state that the last
destination node gets infected from state(t, k−1), 1 ≤ t ≤ n,
i.e., the last transient state before absorption is state(t, k−1).

For each transient state(i, j), it may transit into different
neighboring states, which depend not only on the number of
infected destination nodes, i.e., the value ofj, but also on the
transmission cases, which are defined as follows.

• (RI Case) Relay node Infected, i.e., a new relay node gets
the message in the transmission either from the source
node or from some other relay node.

• (DI Case) Destination node Infected, i.e., a new desti-
nation node gets the message in the transmission either
from the source node or from some relay node.

As shown in the Fig. 1, for a general transient state(i, j)
there, it may transit to state(i + 1, j) with transition rate
r1(i, j) under the RI case, and transit to state(i, j + 1) (resp.
(a, i)) with transition rater2(i, j) under the DI case when
0 ≤ j < k − 1 (resp. whenj = k − 1), and transit back to
itself with rater0(i, j). Thus, it is easy to see that

r0(i, j) = −r1(i, j) − r2(i, j) (2)

Based on the above definitions of transient states and ab-
sorbing states, and the transition diagram of a general transient
state(i, j) illustrated in the Fig. 1, the complicated message



Fig. 2. Illustration of the finite-state absorbing CTMC. Foreach transient
state, only the transitions under the RI case and DI case are included, and the
transition back to itself is not shown for simplicity.

delivery process can be characterized by a two-dimensional
Continuous Time Markov Chain (CTMC) with a finite number
of transient states and absorbing states. We illustrate thefinite-
state absorbing CTMC in the Fig. 2.

For the CTMC shown in the Fig. 2, there are in totalβ
transient states where

β = n · k (3)

and n absorbing states. All theseβ + n states are arranged
into k + 1 rows, with k rows of transient states (n states per
row) plus one row of absorbing states. For the convenience of
reference in the following derivations, we now number theseβ
transient states sequentially as1, 2, . . ., β, in a left-to-right and
top-to-down way, and also number thesen absorbing states
sequentially as1, 2, . . ., n, in a left-to-right way.

From the chain structure illustrated in the Fig. 2, we can
see that a transient state with index (sequence number)t (1 ≤
t ≤ β), corresponds to transient state(i, j), where

i = (t − 1)%n + 1 (4)

j = ⌊
t − 1

n
⌋ (5)

In the following sections, we will base on these sequence
numbers to index a transient state or an absorbing state. Fora
general transient state(i, j) with index t, without incurring
any ambiguity, we will also adopt the notations ofr1(t),
r2(t) and r0(t) to represent ther1(i, j), r2(i, j) and r0(i, j),
respectively.

B. Expected Message Delivery Delay

Before deriving the expected message delivery delay, we
first formally define the message delivery delay as follows.

Definition 1: For a message at the source node, the message
delivery delay is defined as the time elapsed between the time

instant when the source starts to transmit this message and
the time instant when the last destination node among thek
destination nodes receives the message.

We denote byTd the message delivery delay. Now we
proceed to derive the expected message delivery delayE{Td}
based on the above Markov chain theoretical framework.

If we further denote by matrixP = (pij)(β+n)×(β+n) the
one-step transition matrix of the finite-state absorbing discrete-
time Markov chain (referred to as DTMC from now on)
embeddedjust before the jump times of the CTMC in the
Fig. 2, according to the absorbing Markov chain theory [26],
then we have

P =

(

Q R

0 I

)

(6)

where matrixQ = (pij)β×β (i, j ∈ [1, β]) defines the one-step
transition probabilities among transient states in the DTMC,
matrix R = (ps,t)β×n (s ∈ [1, β], t ∈ [1, n]) defines the one-
step transition probabilities from transient states to absorbing
states in the DTMC, and matrixI is the identity matrix of size
n × n.

For the DTMC embedded in the CTMC of Fig. 2, we further
denote by matrixN = (N(i, j))β×β the fundamental matrix of
the DTMC. Notice that based on the Markov chain theoretical
framework, the expected message delivery delayE{Td} can
be regarded as the mean time it takes the chain in Fig. 2 to
become absorbed when the chain starts from state 1 (i.e., state
(1, 0)). If we denote byt1i the number of visits to statei
before absorption given that the chain starts from state 1, and
denote bysij the sojourn time in statei during thejth visit to
statei. According to the Markov chain theory [26], then we
have

E{Td} =

β
∑

i=1

E{

t1i
∑

j=1

sij}

=

β
∑

i=1

E{t1i} · E{sij} (7)

=

β
∑

i=1

−N(1, i) ·
1

r0(i)
(8)

where the (7) follows after applying the Wald’s identity since
the t1i is independent from the{sij}, the (8) follows after
substitutingE{t1i} = N(1, i) andE{sij} = − 1

r0(i)
.

If we further denote bye (of size1×β) the initial probability
vector with all entries equal to zero except the first entry, then
the (8) can be reorganized as

E{Td} = −e · N · r0 (9)

wherer0 = (1/r0(1), 1/r0(2), . . . , 1/r0(β))T .
According to the Markov chain theory [26], the fundamental

matrix N can be further determined as

N = (I − Q)−1 (10)

Combining the (9) and the (10), we can see that in order
to derive theE{Td}, the only remaining issue is to derive the



matrix Q of sizeβ × β which defines the one-step transition
probabilities among neighboring transient states in the (6).

C. Expected Message Delivery Cost

Before deriving the expected message delivery cost, we first
formally define the message delivery cost.

Definition 2: For a message at the source node, the message
delivery cost is defined as the total number of transmissions
it takes the message to be received by all thek destination
nodes.

We denote byCd the message delivery cost, and now we
are ready to derive the expected message delivery costE{Cd}.
Recall that the absorbing state(a, i) (i ∈ [1, n]) denotes that
the last destination node receives the message from state(i, k−
1). It is further noticed that every time a new node (a relay
node or a destination node) gets infected, i.e., receives the
message either from some relay node or from the source node,
one transmission is consumed. Thus, it is easy to see that
when the network is under the state(i, k − 1), there are in
total i + k − 2 transmissions consumed. Together with the
transmission taken to deliver the message to the last destination
node, we can see that if the Markov chain becomes absorbed in
state(a, i), the corresponding message delivery cost isi+k−1.

Let bij be the probability that the DTMC will be absorbed in
the absorbing state with index (sequence number)j (1 ≤ j ≤
n), i.e, state(a, j), given that the chain starts in the transient
state with indexi (1 ≤ i ≤ β), i.e., state((i−1)%n+1, ⌊ i−1

n
⌋),

and let matrixB = (bij)β×n, then according to the Markov
chain theory [26], we have

B = N · R (11)

whereN is the fundamental matrix of the DTMC and theR
is the matrix of sizeβ × n defined for the one-step transition
probabilities from transient states to absorbing states inthe
(6).

Based on the (11) and given that the Markov chain start
from state(1, 0), the E{Cd} can be determined as

E{Cd} =
n

∑

i=1

(i + k − 1) · b1i (12)

Combining the (10), (11) and the (12), we can see that in
order to derive theE{Cd}, the only remaining issue is to derive
the matrixQ andR.

Remark 1:Notice that the Markov chain-based theoretical
framework is general in the sense that: 1) it can be used for
the common mobility models, like the Random Waypoint, the
Random Walk and the Random Direction; 2) the theoretical
framework and the corresponding derivations of theE{Td}
andE{Cd} can be used for the common “store-carry-forward”
routing protocols in the DTNs, where the transition rates of
state(i, j) under the RI case and the DI case, i.e., ther1(i, j)
andr2(i, j), should be set accordingly.

Remark 2:Our theoretical model covers the available mod-
els developed for the two-hop relay with unicast [15]–[18] as
special cases by settingk = 1.

D. Derivations of the MatrixQ and Matrix R

According to the (3), it is challenging to directly derive the
matrix Q andR for the general settings ofn andk. Similar
to the [12], we derive the matrixQ andR in a blocking way.

Notice that for the Markov chain in the Fig. 2, the transitions
happen only among the transient states of the same row or
neighboring rows. Based on this observation, the matrixQ

can be defined as

Q =



























Q0 Q
′

0

Q1 Q
′

1

. . .
.. .

Qt Q
′

t

.. .
.. .

Qk−2 Q
′

k−2

Qk−1



























(13)

here the block (sub-matrix)Qt (t ∈ [0, k − 1]) of size
n × n corresponds to the one-step transition probabilities
among transient states of thetth row of the DTMC, while the
block Q

′

t of sizen× n corresponds to the one-step transition
probabilities from transient states of thetth row to transients
states of the(t + 1)th row of the DTMC. The (13) indicates
that in order to derive the matrixQ, we just need to derive
the blocksQt andQ

′

t there.
Derivation of sub-matrix Qt: Let Qt(i, j) denote theij-

entry of the sub-matrixQt, i, j ∈ [1, n], then the non-zero
entry of Qt can be given by

Qt(i, i + 1) =
r1(i, t)

r1(i, t) + r2(i, t)
if 1 ≤ i ≤ n − 1 (14)

Derivation of sub-matrix Q
′

t: Let Q
′

t(i, j) denote theij-
entry of the sub-matrixQ

′

t, i, j ∈ [1, n], then the non-zero
entry of Q

′

t can be given by

Q
′

t(i, i) =

{

r2(i,t)
r1(i,t)+r2(i,t)

if 1 ≤ i ≤ n − 1,

1 if i = n.
(15)

Now we proceed to derive the matrixR. Similar to the
block-partition of matrixQ, the matrixR can be defined as

R =
[

R0, R1, . . . , Rk−1

]T
(16)

here the block (sub-matrix)Rt (of sizen×n) corresponds to
the one-step transition probabilities from transient states of the
tth row to the absorbing states in the last row,t ∈ [0, k − 1].
The (16) indicates that in order to derive theR, we just need
to derive the blocksRt there.

Derivation of sub-matrix Rt: Let Rt(i, j) denote theij-
entry of sub-matrixRt, i, j ∈ [1, n], then the non-zero entry
of Rt can be given by

Rk−1(i, i) =

{

r2(i,k−1)
r1(i,k−1)+r2(i,k−1) if 1 ≤ i ≤ n − 1,

1 if i = n.
(17)



Notice that from the Markov chain in the Fig. 2, we have
Rt = 0 when0 ≤ t ≤ k − 2.

E. Derivations of the MatrixN

If we denote the matrixI−Q asG, so we haveN = G−1.
Based on the structureQ in the (13), the matrixG can also
be defined in a similar block-partition structure. Let{Gt} and
{G

′

t} denote the main diagonal blocks and the upper diagonal
blocks of the matrixG, respectively, then we have

Gt(i, j) =

{

1 − Qt(i, j) if i = j,

−Qt(i, j) otherwise.
(18)

G
′

t(i, j) = −Q
′

t(i, j) (19)

The following two lemmas indicate that the matrixN can
be calculated based on sub-matrices{G−1

t } and{G
′

t}.
Lemma 1:Each main diagonal blockGt of matrix G has

an inverse matrixG−1
t , where theij-entry G−1

t (i, j) of the
G−1

t can be given by

G−1
t (i, j) =











0 if i > j,

1 if i = j,
∏j−1

s=i Qt(s, s + 1) otherwise.

(20)

wheret ∈ [0, k − 1] and i, j ∈ [1, n].
Proof: As indicated in the (18), for eachGt, we have

Gt = It − Qt. Obviously, theGt is a square matrix of size
n × n. Combining with the definitions ofQt in the (14), and
that 0 < Qt(i, i + 1) < 1, we can see that the main diagonal
entriesGt(i, i) = 1, and all of the off-diagonal entries are zero
except for the upper diagonal entries whereGt(i, i + 1) <
0. It’s easy to see that theGt is invertible and its inverse
matrix G−1

t is an upper triangular matrix. After some basic
row operations, it follows the (20).

Similar to the [27], we have the following lemma regarding
the fundamental matrixN.

Lemma 2:The fundamental matrixN = (Ni,j)k×k of the
DTMC can be determined as

Nij =











0 if i > j,

G−1
i−1 if i = j,

(−1)j−i
(
∏j−2

s=i−1 G−1
s G

′

s

)

G−1
j−1 otherwise.

(21)

wherei, j ∈ [1, k].
Proof: The proof of Lemma 2 is omitted here, and please

refer to the [27] for details.

F. Instantiations for the Epidemic Routing and the Two-hop
Relaying

We now apply the above general theoretical framework
to derive the expected message delivery delay and expected
message delivery cost for the epidemic routing and the two-
hop relaying. We denote byE{Tur

d } and E{Cur
d } the ex-

pected delivery delay and the expected delivery cost under
the epidemic routing, respectively, and denote byE{T 2hr

d }

and E{C2hr
d } the expected delivery delay and the expected

delivery cost under the two-hop relaying, respectively.
Recall that in the Fig. 1, for a general transient state

(i, j) there, we denote byr1(i, j) and r2(i, j) the general
transition rates of state(i, j) under the RI case and the
DI case, respectively. All we need to do is to define the
specific transition ratesr1(i, j) andr2(i, j) for the two routing
schemes.

We first consider the epidemic routing. For a general state
(i, j), if we denote byrur

1 (i, j) its transition rate under the RI
case, denote byrur

2 (i, j) its transition rate under the DI case
and denote byrur

0 (i, j) its transition rate back to itself, then
the rur

1 (i, j), rur
2 (i, j) andrur

0 (i, j) can be determined as

rur
1 (i, j) = (n − i)iλ (22)

rur
2 (i, j) = (k − j)iλ (23)

rur
0 (i, j) = −(n + k − i − j)iλ (24)

After substituting the (22), (23) and (24) into the (9), (14), (15)
and (17) instead of the generalr1(i, j), r2(i, j) and r0(i, j),
it then follows theE{Tur

d } andE{Cur
d }.

Similarly, for a general transient state(i, j) under the two-
hop relaying, if we denote byr2hr

1 (i, j) its transition rate under
the RI case, denote byr2hr

2 (i, j) its transition rate under the DI
case and denote byr2hr

0 (i, j) its transition rate back to itself,
then ther2hr

1 (i, j), r2hr
2 (i, j) andr2hr

0 (i, j) can be determined
as

r2hr
1 (i, j) = (n − i)λ (25)

r2hr
2 (i, j) = (k − j)iλ (26)

r2hr
0 (i, j) = −(n + ki − i − ij)λ (27)

After substituting the (25), (26) and (27) into the (9), (14), (15)
and (17) instead of the generalr1(i, j), r2(i, j) and r0(i, j),
it then follows theE{T 2hr

d } andE{C2hr
d }.

IV. N UMERICAL RESULTS

Based on the Markov chain theoretical framework de-
veloped in the Section III, in this section, we proceed to
analytically evaluate the delivery performance of the epidemic
routing and two-hop relaying.

A. Parameter Settings

In order to evaluate the delivery performance of the con-
sidered two routing schemes in a wide range of network
scenarios, we considered in total three different mobility
patterns, where the meeting intensityλ (contacts/hr) is
selected asλ = 0.101, 0.084 and 0.051. Notice that the
settings of λ = 0.101, 0.084 and 0.051 are obtained by
average statistics of theCambridgetrace dataset [28] using
the calculation method introduced in [20]. As indicated in the
(1), the parameterλ which corresponds to network scenarios
with other mobility patterns can also be easily calculated.
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Fig. 3. Delivery performance vs. number of relay nodesn

B. Performance Analysis

We first explore how the expected delivery delay under the
epidemic routing and the two-hop relaying, i.e., theE{Tur

d }
and E{T 2hr

d } vary with the number of relay nodesn. With
the k fixed ask = 10, we let then vary from 20 to 140,
and summarize the corresponding theoretical results in the
Fig. 3a. As shown in the Fig. 3a, under all the settings ofλ
there, both theE{Tur

d } andE{T 2hr
d } monotonically decrease

with the n. This can be interpreted as that as then increases
up, there are more available relay nodes helping forward the
message, which will improve the message spreading speed and
thus shorten the message delivery delay. It is also observed
that for any givenn there, a biggerλ (and thus a higher
meeting intensity between any node pair) can always lead to a
smallerE{Tur

d } (or E{T 2hr
d }). A further careful observation

of the Fig. 3a indicates that under the same network setting,
the epidemic routing can always achieve a smaller expected
delivery delay than the two-hop relaying. This can be attributed
to the reason that under the two-hop relaying, only the source
node is allowed to infect a new relay node, which will
necessarily slow down the message delivery speed.

The Fig. 3b illustrates the relationship between the expected
delivery cost and then. It is observed that, both theE{Cur

d }
and E{C2hr

d } rise up almost linearly with then, but the
E{Cur

d } is much more sensitive to the variation ofn than
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the E{C2hr
d } (and thus the gap between theE{Cur

d } and the
E{C2hr

d } increases with then). Combining with the Fig. 3a,
we can see that for the epidemic routing, the delivery delay
performance advantage over the two-hop relaying comes with
the sacrifice of delivery cost performance. Since in the real-
world DTNs each mobile is usually power-limited, a careful
trade-off between the delivery delay performance and the
delivery cost performance should be made when deciding
the routing schemes. Also, a further performance comparison
between the epidemic routing and the two-hop relaying is
needed. For example, for the case ofλ = 0.051 in the Fig. 3a,
the E{T 2hr

d } of n = 120 is 4.30 hr, which is 3.21 times
the E{Tur

d } of n = 120 (1.34 hr); while in the Fig. 3b,
the E{Cur

d } of n = 120 is 118.18, which is 3.54 times the
E{C2hr

d } of n = 120 (33.36).

We proceed to explore how thek will affect theE{Tur
d } and

E{T 2hr
d }. With then fixed asn = 60, we let thek vary from5

to 25, and summarize the corresponding results in the Fig. 4a.
As shown in the Fig. 4a, under all the settings ofλ there, both
the E{Tur

d } andE{T 2hr
d } monotonically increase with thek.

A further careful observation of the Fig. 4a indicates that,the
E{T 2hr

d } is much more sensitive to the variation ofk than
the E{Tur

d }. For example, whenλ = 0.101, the E{T 2hr
d } of

k = 15 is 3.32 hr, which is nearly1.25 times that ofk = 5
(2.66 hr there); while theE{Tur

d } of k = 15 (1.31 hr) is only



1.18 times that ofk = 5 (1.11 hr).
The Fig. 4b shows the impact of thek on theE{Cur

d } and
E{C2hr

d }. It is easy to observe that, similar to the Fig. 3b, both
the E{Cur

d } and E{C2hr
d } also increase up almost linearly

with the k. A further careful comparison between the Fig. 4b
and the Fig. 3b indicates that, however, the behavior of
E{Cur

d } and E{C2hr
d } with the k is totally different from

that with the n. As indicated in the Fig. 4b, the curve of
the E{Cur

d } shares almost the same slope with that of the
E{C2hr

d } and the gap between theE{Cur
d } and theE{C2hr

d }
almost remains 39 sincek = 15.

V. CONCLUSION

In this paper, we developed a general continuous time
Markov chain based theoretical framework for the DTN
multicast performance modeling, based on which analytical
expressions were further derived for the expected message
delivery delay and the expected message delivery cost. We
then applied this framework to analytically explore the delivery
performance under the epidemic routing and the two-hop
relaying. Our results indicate that the delivery cost of both
routing schemes rises almost linearly with the number of
relay nodesn (or the number of destination nodesk), and
the meeting intensityλ will affect only the message delivery
speed but the message delivery cost.
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