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Abstract—Many important real networks can be modeled as
intermittently connected mobile networks (ICMNs), like the ve-
hicular ad hoc networks, wildlife tracking and habitat monitoring
sensor networks, military networks, etc. However, the fundamen-
tal performance limits of ICMNs are still largely unknown so far.
This paper explores the capability of these networks to support
multicast traffic, where each source node desires to send packets
to k distinct destinations and all nodes move according to the
generalized hybrid random walk mobility model. We show how
the network capacity and related delay/delay jitter for supporting
multicast in such ICMNs are scaling with the basic network
parameters under three transmission protocols: one-hop relay,
two-hop relay without packet redundancy and two-hop relay with
packet redundancy.

I. INTRODUCTION

The intermittently connected mobile networks (ICMNs) are
self-autonomous wireless networks without any infrastructure
support or centralized management, where nodes are mostly
partitioned and can transmit with each other only when they
come into intermittent contact. The ICMN serves as a model
for many important real network scenarios, like the military
networks in battlefield, vehicular ad hoc networks, pocket
switched personal networks and wildlife tracking and habitat
monitoring networks [1]. Thus, understanding the basic perfor-
mance limits of ICMNs is crucial for the design, optimization
and engineering of such networks.
In ICMN-class networks, the connections from one source

node to multiple destination nodes (multicast) will be required
to support many important applications there, like the group
communications and command delivery in military networks,
wireless video conferences, mobile multimedia services [2],
real-time traffic information reporting [3], diffusion and update
of software patch [4], etc. However, the capability of ICMN-
class networks to support multicast traffic remains largely
unknown and, to the best our knowledge, only some initial
results are available by now [5]. In [5], Lee et al. proposed
RelayCast to improve the throughput bound of wireless multi-
cast in delay tolerant networks and showed that the RelayCast
can achieve a throughput of Θ(min(1, n

nsnd
)), where ns is

the number of source nodes and nd is the number destination
nodes associated with each source node. This paper focuses on
the study of fundamental performance scaling laws in ICMNs
with multicast traffic.
Regarding the performance study of multicast capacity and

related delay in mobile wireless networks, recently a lot of
works have been done for the general mobile ad hoc networks
(MANETs). In [6], Hu et al. established the multicast capacity
and delay tradeoffs for the two-hop relay algorithms. Zhou et
al. in [7] analyzed the delay constrained multicast capacity of
large-scale MANETs, and proposed a joint coding/scheduling
algorithm to achieve a throughput of Θ(min{1,

√
D
ns
}), where

D is the delay constraint and ns is the number of source
nodes. Jose et al. explored the impact of mobility on multicast
capacity in [8]. More recently, the optimal multicast capacity
and delay trade-off in MANETs has also been explored in [9]
from a global perspective. It is notable that all these works
assume a fully connected MANET and consider a constant
number of neighbors in each node’s transmission range, so the
throughput capacity there is mainly limited by the interference.
For an ICMN, however, the nodes are sparsely distributed and
mostly partitioned almost all the time, so its throughput ca-
pacity depends heavily on the contact rates among nodes. Due
to these essential differences between ICMNs and MANETs,
the available multicast capacity and delay results of MANETs
can not be directly applied to characterize that of the ICMNs.
In this paper, we consider the multicast in a cell partitioned

ICMN, where the network area is first evenly divided into
nγ × nγ cells and each cell is then divided into nβ × nβ

equal subcells (γ, β ≥ 0, γ + β > 1/2). All nodes in the
ICMN move according to the generalized hybrid random walk
(HRW) mobility model [10] and each source node desires to
send packets to k distinct destinations. In addition to exploring
the conventional throughput capacity and delay performances,
we also address the delay jitter, a very important performance
metric of multicast applications that was not properly explored
in literature. The main results of this paper are as follows.

• For an ICMN adopting the one-hop relay routing, if
it operates under the non-cooperative mode (i.e., for a
traffic flow, the destination nodes will not help deliver
their received packets to other destinations), the multicast
capacity is O( 1

log k
n−2(γ+β)) while both the delay and

delay jitter are Ω(log k ·n2(γ+β)); when it operates under
the cooperative mode (i.e., the destination nodes will also
act as relays and help deliver their received packets), the
multicast capacity is then O(n−2(γ+β)) while both the
delay and delay jitter become Ω(log k · n2(γ+β)).
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• For an ICMN adopting the two-hop relay routing without
packet redundancy (i.e., each packet may be delivered
to at most one relay), if it operates under the non-
cooperative mode, the multicast capacity is O( 1

k·log k
·

n1−2(γ+β)) while both the delay and delay jitter are
Ω(log k ·n2(γ+β)); when it operates under the cooperative
mode, the multicast capacity is then O( 1

k
n1−2(γ+β))

while both delay and delay jitter become Ω(log k ·
n2(γ+β)).

• For an ICMN adopting the two-hop relay routing with
packet redundancy f (i.e., each packet may be delivered
to at most f distinct relays), the multicast capacity
is Ω( 1

k·f · n1−2(γ+β)) while the delay and delay jit-
ter become O

(
max

{
log n−k

n−k−f
, log k

f

}
· n2(γ+β)

)
and

Ω( log k
f
· n2(γ+β)), respectively.

• For an ICMN with any relay algorithm, its maximum
multicast capacity is determined as O( 1

k
· n1−2(γ+β)),

while for an ICMN adopting any relay algorithm without
packet redundancy, both the minimum delay and the
minimum delay jitter are determined as Ω(log k·n2(γ+β)).

The rest of this paper is outlined as follows. We intro-
duce the system assumptions and definitions in Section II,
then explore the multicast capacity, delay and delay jitter
performances in Section III, and finally conclude the paper
in Section IV.

II. SYSTEM ASSUMPTIONS AND DEFINITIONS

Network Model: The network considered in this paper is
assumed to be a unit torus with n mobile nodes in it. Similar
to [10]–[12], we assume a time-slotted system and a cell-
partitioned network structure. As illustrated in Fig. 1 that the
unit torus is first evenly divided into nγ × nγ cells, and each
cell is then divided into nβ×nβ equal subcells, where γ ≥ 0,
β ≥ 0. As we consider a sparsely distributed ICMN, we set
γ + β > 1/2. We further assume that each node adopts a
transmission range of Θ(n−γ−β) and nodes can communicate
with each other only when they are within the same subcell.
According to the critical connectivity threshold Θ(

√
log n/n)

in [13], we can see that under such setting the concerned
network is ensured to be disconnected with high probability as
n scales up. We consider a limit channel bandwidth scenario
such that the total number of bits that can be transmitted per
time slot inside a subcell is fixed and normalized to one packet.
Mobility Model: Nodes move independently inside the

network according to the generalized HRW mobility model
[10]. As shown in Fig. 1 that at the beginning of each time
slot, a node first selects a cell among all the n2γ cells and
picks a subcell from its n2β subcells therein, then moves
to the selected subcell and stays inside until the end of the
time slot. Notice that the cell and subcell may be selected
according to any probability mass function (pmf), and each
node may follow its individual pmfs for cell selection and
subcell selection. It’s easy to see that the generalized HRW
covers the hybrid random walk model [12] as a special case.

Fig. 1. A cell partitioned network model, where the network region is evenly
divided into cells and subcells, and nodes move according to the generalized
hybrid random walk mobility model. The subcell division of other cells and
the mobility of other nodes are not shown for simplicity.

Traffic Model: We consider a multicast scenario in which
there are in total ns source nodes and each source node has
a locally generated traffic flow to be delivered to other k
randomly and independently selected destination nodes, where
(k + 1)ns ≤ n. For different source nodes, their destination
node sets have no common nodes. Except the (k+1)ns nodes
involved in these ns flows, the remaining n − (k + 1)ns

nodes have no traffic to generate or receive and they will
serve as pure relays for these flows. We assume that the traffic
flow originated at each source node is a Poisson stream with
average rate λ (packets/slot), where the packet arrival process
is independent of node mobility process and all packets arrive
at the beginning of time slots.
Throughput Capacity: We call a traffic input rate λ (pack-

ets/slot) feasible or achievable if there exists a spatial and
temporal scheduling algorithm such that each node can send
at an average rate of λ packets per slot to all its k destinations,
i.e., under such an input rate the queue length at each node
will never increase to infinity as the time goes to infinity. The
per node throughput capacity is then defined as the maximum
feasible input rate λ. Without incurring any ambiguity, here-
after we call such capacity as throughput capacity for brevity.
Delay and Delay Jitter: Different from [14], [15], we con-

sider in this paper the end-to-end delay of a packet including
the queuing delay at its source. The delay of a packet is then
defined as the time it takes for the packet to reach all its k
destinations after it arrives at its source. The delay jitter for a
packet is defined as the time it takes for the packet to reach
its last destination after it reaches its first destination. The
expected end-to-end delay and expected delay jitter are then
obtained by averaging over all packets of the ns traffic flows
in the long term.
Cooperative Mode and Non-cooperative Mode: For any traf-

fic flow, if its destination nodes will help deliver their received
packets to other destinations, we say there is cooperation in
the network and the corresponding relay algorithm is under the
cooperative mode. Otherwise, we say there is no cooperation
in the network and the corresponding relay algorithm is under
non-cooperative mode.
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Order Notations: Given non-negative functions f(n) and
g(n): (1) f(n) = O(g(n)) means that there exist positive
constant c and integer N such that f(n) ≤ cg(n) for all n >
N . (2) f(n) = Ω(g(n)) means that g(n) = O(f(n)). (3)
f(n) = Θ(g(n)) means that f(n) = O(g(n)) and f(n) =

Ω(g(n)). (4) f(n) = o(g(n)) means that limn→∞
f(n)
g(n) = 0.

(5) f(n) = ω(g(n)) means that g(n) = o(f(n)).

III. MULTICAST CAPACITY, DELAY AND DELAY JITTER
In this section, we first analyze the intermeeting times

between any two nodes when they move according to the
generalized HRW mobility model, and then use it to develop
the multicast capacity, delay and delay jitter in ICMNs under
different relay scenarios.

A. Intermeeting Times Between Two Nodes
Consider a tagged node, say node A, moving according to

the generalized HRW mobility model. We denote by C the set
of all n2γ cells and denote by CA(t) ∈ C the cell selected by
node A for time slot t. Hence,

CA := {CA(t); t = 0, 1, . . .}

is a discrete-time stochastic process which records the moving
trajectory of A among n2γ cells. Similar to [10], we assume
that for any node A, it adopts an individual pmf such that CA

is an irreducible and aperiodic Markov chain process. Then
we have the following results regarding the intermeeting times
between two nodes [10].
Theorem 1: For any two nodes A and B, we denote by

I := {I(j); j = 1, 2, . . .} the intermeeting times between A
and B, and denote by pc the probability that nodes A and
B are in contact conditional on the event that they are in the
same cell. If pc > 0 and limn→∞ pc = 0, then we have the
following distributional convergence:

lim
n→∞

Pr

[
I(2)

n2γ/pc

≤ x

]
=

{
1− e−x if x > 0,

0 if x ≤ 0.
(1)

Based on Theorem 1, we can establish the following lemma.
Lemma 1: If we set β > 0 and assume that each node

adopts the discrete uniform distribution for subcell selection at
the beginning of each time slot, as n scales up the intermeet-
ing times I(j) between any two nodes obeys the following
distribution when j ≥ 2.

Pr[I(j) ≤ x] =

{
1− e−n−2(γ+β)·x if x > 0,

0 if x ≤ 0.
(2)

Proof: Theorem 1 tells us that for sufficiently large n,
the intermeeting times I(2) can be well approximated using
exponential random variables (rvs) with mean n2γ/pc. As
each node selects a subcell according to the discrete uniform
distribution, then pc = 1/n2β . It’s easy to see that when
β > 0, we have pc > 0 and limn→∞ pc = 0. Thus, after
applying Theorem 1, we have that as n scales up, I(2) follows
an exponential distribution with mean n2(γ+β). Since the rvs
I(j), j ≥ 2, are i.i.d. rvs, then (2) follows.

Remark 1: As indicated in [10] that (1) holds even for
nonnegligible values of pc, which implies that as n scales
up, (2) can provide an accurate approximation for the inter-
meeting times I(j), j ≥ 2. Since I(1) depends also on the
initial locations of nodes A and B and does not refer to a
real intermeeting time between two consecutive meetings, we
consider only the case when j ≥ 2 in our scaling law analysis.

B. Under One-hop Relay
Without loss of generality, we focus on a tagged multicast

flow in the following analysis. For the tagged flow, we denote
by S its source and denote by {D1, D2, . . . , Dk} the set of
associated destinations.
Under the one-hop relay algorithm, a destination of the

tagged flow can only receive each packet either from the
source S or from some other destination which has already
received the packet. In other words, aside from its source and
the destinations, no other nodes will serve as the relay for the
tagged flow under the one-hop relay algorithm.
Case 1: Non-cooperative Mode
As illustrated in Fig. 2 that when operating under the non-

cooperative mode, each destination of the tagged flow can only
receive packet(s) from the S. Then we have the following
theorem.

Fig. 2. With the one-hop relay algorithm under non-cooperative mode, a
decoupled diagram of the network as seen by the packets transmitted from
the tagged source S to the corresponding destinations.

Theorem 2: For the one-hop relay algorithm under non-
cooperative mode, we denote by μ the multicast throughput
capacity, denote by Te the end-to-end delay and denote by Jd

the delay jitter. If the locally generated traffic at S is a Poisson
stream with average rate λ (packets/slot), as n scales up

μ = O(
1

log k
· n−2(γ+β)) (3)

E{Te} = Ω(log k · n2(γ+β)) (4)
E{Jd} = Ω(log k · n2(γ+β)) (5)

Proof: Consider a packet newly arrived at the head-of-
line (HoL) of the local-queue of S. As S needs to deliver out
k copies of this packet (one copy for each destination), we
denote by Xi the time it takes S to deliver out the ith copy,
where 1 ≤ i ≤ k. If we further denote by X the total service
time of this packet at S, then we have

X =

k∑
i=1

Xi (6)



4

From Lemma 1 we can easily see that the time a destination
takes to receive this packet is an exponentially distributed rv
with mean n2(γ+β). Thus, X1 can be treated as the minimum
one out of k i.i.d. exponential rvs, and similarly, and Xi can be
treated as the minimum one out of k + 1− i i.i.d. exponential
rvs, where 1 ≤ i ≤ k. Then we have

E{Xi} =
1

k + 1− i
n2(γ+β) (7)

By taking the expectation for both sides of (6), we then have

E{X} =

k∑
i=1

1

k + 1− i
n2(γ+β)

= n2(γ+β)(1 +
1

2
+

1

3
+ · · ·+

1

k
)

= n2(γ+β)(ln(k + 1) + r0)

= Ω(log k · n2(γ+β)) (8)

where r0 is the Euler constant.
Since the service time X can also be treated as the max-

imum of k exponentially distributed rvs with mean n2(γ+β),
the cumulative distribution function of X is

Pr(X ≤ x) = (1− e−n−2(γ+β)x)k

=
k∑

t=0

(
k

t

)
(−1)te−n−2(γ+β)·t·x (9)

Then we can see

E{X2} =
k∑

t=1

(
k

t

)
(−1)t

∫ ∞

0

x2de−n−2(γ+β)·t·x

= 2n4(γ+β)
k∑

t=1

(
k

t

)
(−1)t−1 1

t2

= 2n4(γ+β)
(
1 +

k∑
t=2

log t

t

)
= O(log2 k · n4(γ+β)) (10)

Based on (8) and (10), for the M/G/1 queue at node S, we
can see that the mean residual service time E{R} = E{X2}

2E{X}

is O(log k · n2(γ+β)). Thus, the mean service rate μ can be
determined as

μ = O(
1

log k
· n−2(γ+β)) (11)

Based on the queueing theory [16], the expected end-to-end
delay E{Te} can then be determined as

E{Te} =
ρ0E{R}

1− ρ0
+ E{X}

= Ω(log k · n2(γ+β)) (12)

where ρ0 = λ/μ. Regarding the delay jitter Jd, we have

Jd =

k∑
i=2

Xi (13)

Using a similar derivation, Jd can be determined as

E{Jd} = n2(γ+β)(ln(k) + r0)

= Ω(log k · n2(γ+β)) (14)

Then we finish the proof for Theorem 2.
Case 2: Cooperative Mode
Consider a packet newly arrived at the HoL of the local-

queue of S. As shown in Fig. 3 that when operating under
the cooperative mode, except for the first destination which
receives this packet from S, the other k − 1 destinations will
receive the packet from the first destination. Therefore, after
delivering the packet to the first destination, S moves the
packet out of the local-queue and proceeds to deliver the next
packet waiting right behind it.

Fig. 3. With the one-hop relay algorithm under the cooperative mode, a
decoupled diagram of the network as seen by the packets transmitted from
the tagged source S to the corresponding destinations.

Theorem 3: For the one-hop relay algorithm under cooper-
ative mode, if the locally generated traffic at S is a Poisson
stream with average rate λ (packets/slot), as n scales up

μ = O(n−2(γ+β)) (15)
E{Te} = Ω(log k · n2(γ+β)) (16)
E{Jd} = Ω(log k · n2(γ+β)) (17)

Proof: For a new HoL packet, it will experience the
following two queueing process until received by all k desti-
nations: the queueing process at the local-queue of S and the
queueing process at the relay-queues of its first destination. We
denote the first sojourn time by T

(1)
s and denote the second

one by T
(2)
s .

For the new HoL packet, we first focus on its queueing
process at S. Since for each packet waiting in the local-queue,
S only delivers it to the first destination, the actual service time
X at S can then be determined as the time it takes for S to
deliver out the first copy, i.e., X = X1. According to (7), we
have

E{X} =
1

k
n2(γ+β) (18)

Thus, we have

E{T (1)
s } =

1

1− ρ1

n2(γ+β)

k
(19)

= Ω(
1

k
n2(γ+β)) (20)

where ρ1 = λ
k
n2(γ+β) and

λ < k · n−2(γ+β) (21)
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Without loss of generality, we simply assume that node D1

is the first destination node to receive this packet. Now we
proceed to analyze the queuing process at node D1.
Since the M/M/1 queue at the local-queue of S is re-

versible, the output process from S is also a Poisson stream
with average rate λ (packets/slot). As each of the k destinations
has the same probability to become D1, the actual traffic
input rate to D1 is λ

k
. After D1 receives the packet, D1

first duplicates it into k − 1 copies (one copy for each Di,
2 ≤ i ≤ k), then puts a copy to the end of each relay-
queue specified for each destination. Notice that the rate of
removing a copy from the relay-queues of D1 (i.e., the rate
of meeting one specific other destination node) is n−2(γ+β).
Thus, the relay-queue occupancy variation process at D1

can be characterized by a birth/death chain with birth rate
n−2(γ+β) and death rate k−1

k
· λ, which in turn enables the

queueing process at D1 to be treated as a M/M/1 queue.
With a little abuse of notations, we use Xi to denote the

time it takes for the node Di to receive a copy from D1 (after
D1 receives this packet), 2 ≤ i ≤ k. Then we have

E{Xi} =
1

n−2(γ+β) − k−1
k
· λ

(22)

Thus, the sojourn time of this packet at D1 is determined as

T (2)
s = max{X2, X3, . . . , Xk} (23)

Since Xi (2 ≤ i ≤ k) is an exponentially distributed rv and
the rvs X2, X3, . . . , Xk are mutually independent, thus

E{T (2)
s } =

ln k + r0

E{Xi}
(24)

= Ω
( log k · n2(γ+β)

1− ρ2

)
(25)

where ρ2 = k−1
k

λ · n2(γ+β), (24) follows after applying
Lemma 2 in [6] and (25) follows after substituting (22) into
(24).
Based on (19) and (24), the expected end-to-end delay

E{Te} (of the tagged packet) can be determined as

E{Te} = E{T (1)
s }+ E{T (2)

s }

=
1

1− ρ1

n2(γ+β)

k
+

ln k + r0

1− ρ2
n2(γ+β)

= Ω
(

max
{1

k
, log k

}
· n2(γ+β)

)
(26)

= Ω(log k · n2(γ+β)) (27)

To ensure the stability of the relay-queues at D1, i.e., the
relay-queue length will not grow to infinity, we should have

λ <
k

k − 1
n−2(γ+β) (28)

Combining (21) and (28), the throughput capacity can be
determined as

μ = min
{

k · n−2(γ+β),
k

k − 1
n−2(γ+β)

}
= O(n−2(γ+β)) (29)

Regarding the delay jitter, it is easy to see that

E{Jd} = E{T (2)
s } = Ω(log k · n2(γ+β)) (30)

Then we finish the proof for Theorem 3.
Remark 2: By comparing the multicast capacity, delay and

delay jitter derived under the one-hop relay algorithm with
the non-cooperative mode and with the cooperative mode, we
can see that by allowing the destinations to help deliver their
received packets, the throughput capacity is improved from
O( 1

log k
·n−2(γ+β)) to O(n−2(γ+β)), while the delay and delay

jitter performances remain the same as Ω(log k·n2(γ+β)) under
both modes.

C. Under Two-hop Relay Without Packet Redundancy
Under the two-hop relay algorithm, a node can be simulta-

neously a source (destination) and a relay for multiple flows.
To simply our analysis, we assume that when two nodes need
to contend for becoming the transmitter, each of them has the
equal probability to become the transmitter. In the case that a
transmitter can transmit a packet either as a source (“source-
to-relay” transmission) or as a relay (“relay-to-destination”
transmission), then it conducts either transmission with the
same probability of 1/2.
Case 1: Non-cooperative Mode
As shown in Fig. 4 that when operating under the non-

cooperative mode, except the nodes S and Di (1 ≤ i ≤ k) of
the tagged flow all other n−1−k nodes will serve as the relay
of the flow. Notice that these n− 1− k relays can be further
classified into three different groups: the ns − 1 sources, the
(ns − 1)k destinations and the n − (k + 1)ns pure relays. If
we denote these three groups by G1, G2 and G3, respectively,
then we can establish the following theorem.

Fig. 4. With the two-hop relay algorithm under non-cooperative mode, a
decoupled diagram of the network as seen by the packets transmitted from
the tagged source S to the corresponding destinations.

Theorem 4: For the two-hop relay algorithm under the non-
cooperative mode, if the locally generated traffic at S is a
Poisson stream with average rate λ (packets/slot), as n scales
up we have

μ = O(
1

k · log k
· n1−2(γ+β)) (31)

E{Te} = Ω(log k · n2(γ+β)) (32)
E{Jd} = Ω(log k · n2(γ+β)) (33)
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Proof: Consider a new HoL packet at S. Under the two-
hop relay algorithm, the packet may reach its destinations
either via a node from G1, G2 and G3 or directly from S.
We first focus on the cases that this packet is routed from a

node of groups G1, G2 and G3. Without loss of generality, we
assume that this packet is routed to its destinations via a node
(say node S

′

) of G1, i.e., a node from the ns − 1 sources. It
is easy to see that the end-to-end delay of the packet consists
of two parts, the sojourn time in the local-queue of S and the
sojourn time in the relay-queues of S

′

. We denote the first
sojourn time by T

(1)
s and denote the second one by T

(1)
g .

Notice that the rate for S to deliver out this packet can be
determined as

n−2(γ+β)
(ns − 1

2
+

(ns − 1)k

2
+ (n− (k + 1)ns) + k

)
= ϕ · n−2(γ+β) (34)

where ϕ = n− (k+1)ns

2 + k−1
2 .

Thus, the expected sojourn time at S is given by

T (1)
s =

1
ϕ
n2(γ+β)

1− ρ3
(35)

where ρ3 = λ
ϕ
· n2(γ+β) and

λ < ϕ · n−2(γ+β) (36)

Now we proceed to explore the sojourn time T
(1)
g at S

′

. If
we denote by P

(1)
g the probability that S delivers this packet

to G1, then we have

P (1)
g =

ns − 1

2ϕ
(37)

The probability that S delivers this packet to S
′

can then be
determined as

n−2(γ+β)/2

ϕ · n−2(γ+β)
=

1

2ϕ
(38)

Thus, the traffic input rate from S into S
′

is just λ
2ϕ
.

After S
′

receives this packet, S
′

first duplicates this packet
into k copies, and then puts a copy to the relay-queue specified
for each destination of this packet. Thus, the relay-queue
occupancy state at S

′

can be characterized by a birth/death
chain with birth rate 1

2n−2(γ+β) and death rate k·λ
2ϕ
. Then the

time it takes for a specific destination node of this packet
to receive this packet from S

′

is the sojourn time in the
corresponding M/M/1 queue at S

′

, i.e., 2n2(γ+β)

1−ρ4
, where

ρ4 = kλ
ϕ

n2(γ+β) and

λ <
ϕ

k
· n−2(γ+β) (39)

Since the sojourn time T
(1)
g is the time it takes for the last

destination node to receive this packet from S
′

, we have

E{T (1)
g } =

2(ln(k + 1) + r0)

1− ρ4
n2(γ+β) (40)

Similarly, if we denote by P
(2)
g the probability that this

packet is routed via a G2 node, and denote by T
(2)
g the sojourn

time of this packet in the G2 node, then we have

P (2)
g =

(ns − 1)k

2ϕ
(41)

E{T (2)
g } =

2(ln(k + 1) + r0)

1− ρ4
n2(γ+β) (42)

If we denote by P
(3)
g the probability that this packet is

routed via a G3 node, and denote by T
(3)
g the sojourn time of

this packet in the G3 node, then we have

P (3)
g =

n− (k + 1)ns

ϕ
(43)

E{T (3)
g } =

ln(k + 1) + r0

1− ρ4
n2(γ+β) (44)

Now we proceed to explore the case that this packet is
routed directly from S to its destinations. We denote by Ps

the probability that this packet is routed directly by S to its k

destinations, and denote by T
(v)
s the time it takes S to deliver

the packet to the other remaining k−1 destinations. It is easy
to see that

Ps =
k

ϕ
(45)

Using derivations similar to that for Theorem 2, we have

E{T (v)
s } = (ln k + r0)n

2(γ+β) (46)

Thus, the input rate of this part of traffic is determined as

Ps · λ <
1

ln k + r0
n−2(γ+β) (47)

From (45) we then have

λ <
ϕ

k · log k
n−2(γ+β) (48)

Based on (37), (40), (41), (42), (43), (44), (45) and (46),
the expected end-to-end delay can be determined as

E{Te} = E{T (1)
s }+

3∑
i=1

P (i)
g · E{T (i)

g }+ Ps · E{T
(v)
s }

=
n2(γ+β)

ϕ

( 1

1− ρ3
+

n− k − 1

1− ρ4
log k + k · log k

)
= Ω

(
log k · n2(γ+β) ·

(n− k)c1 + k

n− (k+1)ns

2 + k−1
2

)

= Ω(log k · n2(γ+β)) (49)

By combining (36), (39) and (48), the throughput capacity
can then be determined as

λ <
ϕ

k · log k
n−2(γ+β)

= O(
1

k · log k
· n1−2(γ+β)) (50)
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Regarding the delay jitter E{Jd}, we have

E{Jd} =
n2(γ+β)

ϕ

(n− k − 1

1− ρ4
log k + k · log k

)
= Ω(log k · n2(γ+β)) (51)

We then finish the proof for Theorem 4.

Case 2: Cooperative Mode
As shown in Fig. 5 that when operating under the coop-

erative mode, the destination node that is the first one to
receive a packet will also act as a relay helping forward the
received packet to other remnant k− 1 destinations. From the
perspective of the source node S, S will not discriminate the
k destinations and other n− 1− k nodes, which is the basic
difference from that of the non-cooperative mode.

Fig. 5. With the two-hop relay algorithm under cooperative mode, a
decoupled diagram of the network as seen by the packets transmitted from
the tagged source S to the corresponding destinations.

Theorem 5: For the two-hop relay algorithm under the
cooperative mode, if the locally generated traffic at S is a
Poisson stream with average rate λ (packets/slot), as n scales
up we have

μ = O(
1

k
· n1−2(γ+β)) (52)

E{Te} = Ω(log k · n2(γ+β)) (53)
E{Jd} = Ω(log k · n2(γ+β)) (54)

Proof: As shown in Fig. 5 that for a new HoL packet at S,
it may also be routed to its destinations via the destination node
that receives it first. If we denote the group of k destinations
by G4 and define G1, G2 and G3 in the same way as that in
Theorem 4, then we can see that this packet can be routed via
a node from G1, G2, G3 or G4 .
By comparing with the packet delivery process under the

non-cooperative mode, we can see that the only difference is
the case when the packet is routed via a node of G4. If we
denote by P

(4)
g the probability that this packet is routed via a

G4 node, and denote by T
(4)
g the sojourn time of this packet

in the G4 node, then we have

P (4)
g =

k

ϕ
(55)

Using the derivations similar to that for Theorem 3, we have

E{T (4)
g } =

2(ln k + r0)

1− ρ5
n2(γ+β) (56)

where ρ5 = 2(k−1)λ
ϕ

n2(γ+β) and

λ <
ϕ

2(k − 1)
n−2(γ+β) (57)

Thus, the end-to-end delay can be determined as

E{Te} = E{T (1)
s }+

4∑
i=1

P (i)
g · E{T (i)

g }

=
n2(γ+β)

ϕ

( 1

1− ρ3
+

n− k − 1

1− ρ4
log k +

2k log k

1− ρ5

)
= Ω

(
log k · n2(γ+β) ·

(n− k)c1 + k · c2

n− (k+1)ns

2 + k−1
2

)

= Ω(log k · n2(γ+β)) (58)

Combining (36), (39) and (57), the throughput capacity can
be determined as

λ <
ϕ

2(k − 1)
n−2(γ+β)

= O(
1

k
· n1−2(γ+β)) (59)

Regarding the delay jitter E{Jd}, we have

E{Jd} =
n2(γ+β)

ϕ

(n− k − 1

1− ρ4
log k +

2k log k

1− ρ5

)
= Ω(log k · n2(γ+β)) (60)

This finishes the proof for Theorem 5.

D. Under Two-hop Relay With Packet Redundancy
As indicated in [11] that throughput can be traded with

delay performance by introducing packet redundancy in packet
delivery process. In this section, we proceed to explore the
multicast capacity, delay and delay jitter under the two-
hop relay algorithm with packet redundancy. Specifically, we
assume that for each packet, S will deliver it to at most f
distinct relays, and each relay will then help forward the packet
to all destinations. Since the relay node can only send its
carried packet to the destinations, each packet travels at most
two hops to reach its destinations. As we do not discriminate
the k destinations and other n − 1 − k nodes, and thus any
node which receives a copy from S will act as a relay.
Theorem 6: For the two-hop relay algorithm with packet

redundancy f (i.e., each packet may be delivered to at most f
distinct relays), if the locally generated traffic at S is a Poisson
stream with average rate λ (packets/slot), as n scales up we
have

μ = Ω(
1

k · f
· n1−2(γ+β)) (61)

E{Te} = O

(
max

{
log

n− k

n− k − f
,
log k

f

}
· n2(γ+β)

)
(62)

E{Jd} = Ω(
log k

f
· n2(γ+β)) (63)
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Proof: Consider a new HoL packet at S. From Theorem 5,
it is trivial to see that

μ = Ω(
1

k · f
· n1−2(γ+β)) (64)

Now we proceed to explore the delay and delay jitter.
We simply assume the new HoL packet will experience two
processes: first S delivers it to f distinct relay nodes, then
the f relay nodes forward it to the destinations. We denote
the delay of the first process and the second process by T

(1)
e

and T
(2)
e , respectively. It is easy to see that the packet delay

derived under this two processes will provide an upper bound
for E{Te}. Thus, we have

E{Te} ≤ E{T (1)
e }+ E{T (2)

e } (65)

Regarding the first process, we consider such a case that
all the f relays belong to the other n − 1 − k nodes, i.e.,
no one from the set {D1, D2, . . . , Dk} has received a copy.
Obviously, the delay derived under this case serves as an upper
bound for the E{T

(1)
e }. Thus, we have

E{T (1)
e } ≤ n2(γ+β) ·

f∑
i=1

1

n− k − i

= n2(γ+β)
( n−1−k∑

i=1

1

i
−

n−1−k−f∑
j=1

1

j

)

= n2(γ+β)
(

ln(n− k)− ln(n− k − f)
)

= n2(γ+β) · log
n− k

n− k − f
(66)

In the second process, we consider such a case that after
receiving the packet from relay, any destination node will not
help forward its received packet to other remnant destinations.
Obviously, the delay derived under this case serves as an upper
bound for E{T

(2)
e }. Thus, we have

E{T (2)
e } ≤ n2(γ+β) ·

k∑
i=1

1

f(k + 1− i)

=
n2(γ+β)

f
(ln(k + 1) + r0)

=
log k

f
· n2(γ+β) (67)

Combining (65), (66) and (67), then we have

E{Te} = O

(
max

{
log

n− k

n− k − f
,
log k

f

}
·n2(γ+β)

)
(68)

Regarding the delay jitter, we have

E{Jd} ≥ n2(γ+β) ·

k∑
i=2

1

f(k + 1− i)

= Ω(
log k

f
· n2(γ+β)) (69)

We then finish the proof for Theorem 6.

E. The Maximum Capacity and Minimum Delay/Delay Jitter
This section further explores the maximum multicast

throughput capacity under any relay algorithm and also the
minimum delay/delay jitter under any relay algorithm without
packet redundancy.
Theorem 7: For the concerned ICMN with any relay algo-

rithm, the maximum multicast throughput capacity is deter-
mined as O( 1

k
· n1−2(γ+β)).

Proof: For the tagged flow, the maximum rate of packet
delivery depends on the rate of S meeting available relay
nodes. The best case is that all the other n − 1 nodes will
help forward packets for S. Thus, the maximum rate of packet
delivery of this flow into the network is (n − 1)n−2(γ+β).
Symmetrically, the network can output packets of this flow
with a rate of at most (n − 1)n−2(γ+β). Under the multicast
scenario, the reception of one packet requires at least k
contacts, so the maximum throughput of the tagged flow can
be determined as O( 1

k
· n1−2(γ+β)).

Theorem 8: For the concerned ICMN adopting any relay
algorithm without packet redundancy, both the minimum de-
lay/delay jitter are determined as Ω(log k · n2(γ+β)).

Proof: As indicated in [6] that if no redundancy is allowed
in the packet delivery process, adopting relay nodes does
not help to improve the delay performance. This enables the
minimum delay/delay jitter to be derived based on the one-hop
relay with non-cooperative mode.
Consider a new HoL packet at S. If we denote by ej the

event that by time slot i− 1, the destination Dj has ever met
S, where 1 ≤ j ≤ k. Thus, the event that by time slot i−1 all
the destinations except the last one have received the packet,
can be expressed as

ek ∩ e1 ∩ e2 ∩ e3 ∩ · · · ∩ ek−1

= ek ∩ (I− e1 ∩ e2 ∩ · · · ∩ ek−1)

= ek − (ek ∩ e1) ∪ (ek ∩ e2) ∪ · · · ∪ (ek ∩ ek−1) (70)

If we denote by Tmin the minimum delay of this HoL
packet, then we have

Pr(Tmin = i) = k · n−2(γ+β)

(
(1− n−2(γ+β))i−1

−
k−1∑
j=1

(
k − 1

j

)
(−1)j−1

(
1− (j + 1)n−2(γ+β)

)i−1
)
(71)

Based on (71), E{Tmin} can be determined as

E{Tmin} =

∞∑
i=1

i · Pr(Tmin = i)

= k · n2(γ+β)

(
1−

(
k − 1

1

)
1

22
+

(
k − 1

2

)
1

32
− · · ·

)
(72)

= n2(γ+β)

((
k

1

)
−

(
k

2

)
1

2
+

(
k

3

)
1

3
− · · ·

)

= Ω(log k · n2(γ+β)) (73)
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TABLE I
MULTICAST CAPACITY, DELAY AND DELAY JITTER IN ICMNS.

Relay Algorithms Capacity Delay Delay Jitter
One-hop, non-cooperative O( 1

log k
· n−2(γ+β)) Ω(log k · n2(γ+β)) Ω(log k · n2(γ+β))

One-hop, cooperative O(n−2(γ+β)) Ω(log k · n2(γ+β)) Ω(log k · n2(γ+β))

Two-hop, non-cooperative O( 1
k·log k

· n1−2(γ+β)) Ω(log k · n2(γ+β)) Ω(log k · n2(γ+β))

Two-hop, cooperative O( 1
k
· n1−2(γ+β)) Ω(log k · n2(γ+β)) Ω(log k · n2(γ+β))

Two-hop, redundancy f Ω( 1
k·f

· n1−2(γ+β)) O
(

max
{

log n−k
n−k−f

,
log k

f

}
· n2(γ+β)

)
Ω( log k

f
· n2(γ+β))

where (72) follows after applying derivations similar to that
in [6]. By using a derivation similar to that of the minimum
delay, the result for the minimum delay jitter follows.

F. Discussion
We summarize our main results in Table I. As shown in

Table I that the delay results derived under both the one-hop
relay and the two-hop relay have the same scaling order of
Ω(log k ·n2(γ+β)), which indicates that for an ICMN without
packet redundancy, introducing relay in packet delivery pro-
cess will not help in improving the delay performance. We
can also see that for the two relay algorithms under both the
non-cooperative mode and cooperative mode, the delay jitter
has the same scaling order as the delay. However, if we allow
packet redundancy in packet delivery process, the scaling laws
of delay and delay jitter are different.
A further careful observation of Table I indicates that for

the one-hop relay algorithm, the throughput capacity can
be improved by log k times when allowing the destination
cooperation. It is interesting to notice that for the two-hop
relay, the capacity of the cooperative mode is also log k times
as that of the non-cooperative mode. Thus, for the concerned
ICMN, allowing destination cooperation can help improve
the multicast capacity by log k times. We can also see that
when operating under either the non-cooperative mode or the
cooperative mode, the capacity of the two-hop relay is always
n
k
times as that of the one-hop relay. Thus, using extra relay

nodes can improve the multicast capacity by n
k
times.

Another observation of Table I is that when adopting the
two-hop relay under the cooperative mode, the multicast
capacity is reported as O( 1

k
·n1−2(γ+β)). Although we consider

an ICMN with γ + β > 1
2 in this paper, we can see that as

γ + β → 1
2 we will have a multicast capacity of O( 1

k
), which

is consistent with the one derived for MANETs in literature.

IV. CONCLUSION

In this paper, we examined the scaling laws of multicast
capacity, delay and delay jitter in ICMNs, where each source
desires to send packets to k distinct destinations and all
nodes move according to the generalized hybrid random walk
mobility model. Our results indicate that for an ICMN with-
out packet redundancy, adopting destination cooperation can
improve the multicast capacity by log k times, while adopting
extra relay nodes can improve the multicast capacity by n

k

times. It is also interesting to find that although we consider

an ICMN with the constraint of γ+β > 1
2 here, as γ+β → 1

2
our multicast capacity result actually reduces to O( 1

k
), same

as that derived for the MANETs in literature.
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