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Abstract—The lack of a general capacity theory on mobile ad
hoc networks (MANETs) is still a challenging roadblock stunting
the application of such networks. The available works on this
line mainly focus on deriving order sense results, which are
helpful for us to explore the general scaling laws of throughput
capacity but tell us little about the exact achievable throughput.
This paper studies the exact per node throughput capacity of
a MANET, where the transmission power of each node can be
controlled to adapt to a specified transmission range υ and a
generalized two-hop relay with limited packet redundancy f is
adopted for packet routing. Based on the concept of automatic
feedback control and the Markov chain model, we first develop
a general theoretical framework to fully depict the complicated
packet delivery process in the challenging MANET environment.
With the help of the framework, we are then able to derive the
exact per node throughput capacity for a fixed setting of both υ
and f . Based on the new throughput result, we further explore
the optimal throughput capacity for any f but a fixed υ and also
determine the corresponding optimum setting of f to achieve it.
This result helps us to understand how such optimal capacity
varies with υ (and thus transmission power) and to find the
maximum possible throughput capacity of such a network for
any f and υ. Surprisingly, our results here indicate that usually
such maximum throughput capacity can not be achieved through
the local transmission, a fact different from what is generally
believed in literature.

I. INTRODUCTION

The mobile ad hoc network (MANET), a very flexible
and self-autonomous wireless network architecture, is very
promising to find many important applications in the daily
information exchange, disaster relief, military troop commu-
nication, etc. By now, the lack of a general Shannon limit-
like network capacity theory is still a challenging roadblock
stunting the development and commercialization of MANETs
[1]. It is expected such a theory can help us to understand
the basic network throughput capacity limit and thus serves as
an instruction guideline for the network design, performance
optimization and engineering of future MANETs [2], [3].
Since the seminal work of Grossglauser and Tse (2001)

[4], a lot of research efforts have been devoted to a better
understanding of the MANET throughput capacity under var-
ious mobility models. Grossglauser and Tse [4] showed that
under the i.i.d. mobility model, it is possible to achieve a Θ(1)
per node throughput by employing a two-hop relay scheme.
Following this line, it was later proved that the Θ(1) per
node throughput can also be achieved under other mobility

models, like the random walk model [5], the two-dimensional
Brownian motions model [6] and the restricted mobility model
[7]. Moraes et al. further showed that under uniform mobility
model, we can still have the Θ(1) throughput even with a
variant of the two-hop relay scheme, where each packet is
only broadcasted once by its source and all nodes that receive
the packet will act as its relays [8].
Recently, the trade-off between the throughput capacity

and delay performances in MANETs has also been exten-
sively explored. Perevalov et al. [9] studied the delay-limited
throughput of MANETs and reported that under the i.i.d. mo-
bility model, the achievable throughput is of order Θ(n−1/3)
for a fixed delay value d and the throughput increases as
d2/3 when the delay d is a moderate value. Lin et al. [10]
considered the Brownian motion model and showed that the
two-hop relay scheme proposed by Grossglauser and Tse,
while capable of achieving a per node throughput of Θ(1),
incurs an expected packet delay of Ω(log n/σ2

n), where σ2
n

is the variance parameter of the Brownian motion model.
Neely et al. [11] proved that under the i.i.d. mobility model,
it is able to achieve O(1/

√
n) throughput and O(

√
n) delay

by introducing exact
√

n redundancy for each packet. More
recently, the per node throughput capacity and delay trade-off
has also been studied under the random waypoint model [12]
and the Brownian mobility model [13].
It is notable that the above works mainly focus on deriving

the order sense results of MANET throughput capacity. Al-
though the order sense results are helpful for us to understand
the general scaling law and thus the growth rate of the
throughput capacity with network size n, they tell us little
about the exact achievable per node throughput capacity. In
practice, however, such exact network throughput capacity is
of great interest for network designers. Another limit of these
works is that the impact of node transmission range on the
throughput capacity of MANETs has been largely neglected.
Since it is generally believed that the local transmission mode
could result in the maximum per node throughput capacity,
these work generally adopt the local transmission mode in
their analysis, where either each node has a small transmission
range of Θ(1/

√
n) [4], [7]–[10], [12], [13], or it can only

transmit to some other node(s) in the same cell [5], [6], [11].
In this paper, we study the exact per node throughput

capacity of a MANET, where the transmission power (and thus
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transmission range) of each node can be controlled such that
the impact of the transmission range on per node throughput
capacity can be explored. For packet routing, we consider
a generalized two-hop relay with limited packet redundancy
(i.e., with a specified limit on the maximum number of
distinct relays for each packet), which covers the available
two-hop relay schemes [11]–[13] as special cases. The main
contributions of this paper are summarized as follows:
• By modeling the packet dispatching at its source and the
packet receiving at its destination as Markov chains and
applying the concept of automatic feedback control to
characterize the service rate adaption between the source
and destination of a flow, we first develop a general
theoretical framework to depict the complicated packet
delivery process in the challenging MANET environment.

• With the help of the theoretical framework, we then
develop the exact per node throughput capacity μ(υ, f)
for any specified setting of transmission range υ and
packet redundancy limit f . Simulation results are also
provided to validate the throughput capacity result.

• Based on the new throughput result, we further explore
the optimal capacity maxf{μ(υ, f)} for a fixed υ and
also determine the corresponding optimum setting of f
to achieve it. This result helps us to understand how such
optimal capacity varies with υ and to find a suitable υ
(and also f ) to achieve the maximum possible throughput
capacity maxυ,f{μ(υ, f)} of such a network.

The rest of this paper is outlined as follows. Section II pro-
vides the system assumptions and definitions, and Section III
discusses the issues of transmission scheduling and packet
routing. In Section IV, we develop the theoretical model for
achievable per node throughput capacity and present numerical
results to validate it. We study in Section V the throughput
maximization problem and explore the impact of transmission
range on the maximum per node throughput capacity, and
finally conclude the paper in Section VI.

II. SYSTEM ASSUMPTIONS AND DEFINITIONS
Network Model: Similar to the previous works [6], [11],

[14], in this paper we consider a two-dimensional torus
network with unit area and n independent mobile nodes. We
assume that the time is slotted and the network is evenly
divided into

√
n×√n cells with 1/n area each, as illustrated in

Fig. 1a. We consider the limit channel bandwidth scenario such
that the total number of bits that can be transmitted per time
slot is fixed and normalized to one packet. We further suppose
that during each time slot each node has the knowledge about
which cell it falls within based on its location information (For
node localization, please refer to [15], [16]).
Mobility Model: This paper focuses on the i.i.d. node

mobility model [17]–[19], where each node first independently
and uniformly chooses a destination cell over all n cells at the
beginning of each time slot, and then stays within it for the
whole time slot. Under the i.i.d. mobility model, the time a
node takes to move from one cell to another cell is neglected,
so such model is able to capture the node behaviors in the

(a) Cell partitioned network. (b) Illustration of transmission-group
with α = 6.

Fig. 1. Network cell partition and transmission-group.

regime of infinite mobility. The results in [11] indicate that
the network capacity derived under the i.i.d. mobility model
is actually identical to the one derived under other non-i.i.d.
mobility models (like the Markovian random walk model and
random waypoint model) if they follow the same steady state
channel distribution.
Communication Model: To account for the interference

among simultaneous transmissions, the Protocol Model in-
troduced in [6], [20] is adopted here. For a link i at time
slot t, we use Ti(t) and Ri(t) to denote the positions of
the corresponding transmitter and receiver, respectively. Based
on the Protocol Model, the transmission of the link i can
be successful at the time slot t if for any other link j with
simultaneous transmission we have

|Tj(t)−Ri(t)| ≥ (1 + Δ)|Ti(t)−Ri(t)|

here Δ is a protocol specified guardfactor for interference
control. In order to explore the impact of power control on
network throughput capacity, similar to [21] we assume that
each node employs a power level so as to cover a set of cells
with horizontal and vertical distances no more than υ−1 cells
away from its current cell, where 1 ≤ υ ≤ �

√
n+1
2 �, and �x�

is the floor function. With such power control, a node could
transmit to any other node in a square area centered at the
cell of the node and is of side length (2υ − 1)/

√
n, as that

illustrated in Fig. 1a.
Traffic Model: This paper considers the permutation traffic

pattern widely adopted in previous studies [4], [11], [14], [17],
[22]–[24]. Under such traffic model, there will be in total n
distinct flows, where each node is the source of its locally
generated traffic flow and at the same time the destination of
another flow originated from some other node. For the traffic
flow originated at each node, we assume it has an average
rate of λ (packets/slot). The packet arrival process at each
node is independent of its mobility process and all packets
arrive at the beginning of each time slots. For the purpose
of throughput capacity analysis, we simply assume that no
lifetime is associated with each packet and the buffer size at
each node is large enough such that the packet loss due to
buffer overflow will never happen.
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Throughput Capacity: We call a traffic input rate λ (pack-
ets/slot) feasible or achievable if there exists a spatial and
temporal scheduling algorithm such that under this input rate
the queue length at each node will never increase to infinity
as the time goes to infinity. The per node throughput capacity
is then defined as the maximum feasible input rate λ. Without
incurring any ambiguity, hereafter we call such capacity as
throughput capacity for brevity.

III. TRANSMISSION SCHEDULING AND ROUTING
This section introduces the transmission scheduling and

routing schemes to be adopted in this paper.

A. Transmission-Group Based Scheduling
According to the protocol interference model, multiple

links could simultaneously transmit if they are sufficiently
far away from each other. To support as many simultaneous
link transmissions as possible while ensuring an acceptable
interference among nodes, we consider here a transmission-
group based scheduling scheme similar to [14], [22], [25],
[26].
Transmission-group: A transmission-group is a subset of

cells, where any two of them have a vertical and horizontal
distance of some multiple of α cells and all of them could
conduct transmission simultaneously.
An example of transmission-group is illustrated in Fig. 1b,

where all the shaded cells are of the same transmission-group
and each of them can simultaneously support a transmitting
node in it without interfering with each other. It is notable that
for the transmission-group based scheduling with parameter α,
there will be in total α2 distinct transmission-groups, where
each cell belongs to one distinct transmission-group. If all
transmission-groups alternatively become active (i.e., get the
transmission opportunity), then each transmission-group (and
thus each cell) becomes active in every α2 time slots.
Setting of Parameter α: To support as many simultane-

ous transmissions as possible, we need to properly set the
parameter α of transmission-group based on the parameter
υ for power control and the parameter Δ for interference
control. As illustrated in Fig. 1b, suppose that the node V
is scheduled to receive from some transmitting node, while
the node K in another active cell of the same transmission-
group is transmitting to some other node. Notice that in
this paper we consider a network scenario where each node
employs a power level so as to cover a set of cells which
have a horizontal and vertical distance of no greater than
υ − 1 cells away from its current cell, 1 ≤ υ ≤ �

√
n+1
2 �.

Thus, we assume that the node V is at a distance of (x, y)
(x, y ∈ [−υ +1, υ−1]) cells away from its transmitting node,
where the x and y denote the horizontal distance and vertical
distance, respectively. It is trivial to see that we only need to
consider the cases that x ∈ [0, υ−1], y = υ−1. We can easily
see that the distance from node V to its transmitting node
is at most 1√

n

√
υ2 + (x + 1)2, while another simultaneous

transmitting node (say the node K in Fig. 1b) is at least
1√
n

√
(α− υ)2 + x2 away from the node V . According to the

interference model, the condition thatK will not interfere with
the reception at the V is that for any x ∈ [0, υ − 1],

1√
n

√
(α− υ)2 + x2 ≥ (1 + Δ)

1√
n

√
υ2 + (x + 1)2 (1)

To ensure above inequality for each x ∈ [0, υ − 1], we have

α ≥ υ +
√

2(Δ + 1)2υ2 − (υ − 1)2 (2)

Since α is an integer and α ≤ √n, we can set α as follow to
support as many simultaneous transmissions as possible.

α = min{υ + �
√

2(Δ + 1)2υ2 − (υ − 1)2	, �√n�} (3)

Selection of Transmitting Node: The results in [14] indicate
that at any time slot, the event that there are at least two nodes
falling within an an active cell happens with a non-negligible
probability (approaches 1−2e−1 as n goes to infinity). When
there are more than one node in an active cell, the selection
of transmitting node from the cell can be implemented by
a mechanism similar to the DCF. At the beginning of each
time slot, each node independently judges whether it is inside
an active cell or not. If not, it remains silent and will not
contend for the transmitting opportunity. Otherwise, it starts its
back-off counter with a seed randomly selected from [0, CW ]
(CW represents the contention window), and then overhears
the channel until its back-off counter becomes 0 or it hears a
broadcasting message from a transmitter. If no broadcasting
message is heard during the back-off counting process, it
broadcasts out a message denoting itself as the transmitter.
Based on the back-off counting mechanism, each node of an
active cell has the same probability to win the transmission
opportunity and thus becomes the transmitting node.

B. 2HR-f Routing Scheme
In this paper, we consider a generalization of the classic

two-hop routing scheme with f -cast (2HR-f ) [11], [14], [27],
f ∈ [1, n − 2], where each packet waiting at the source
is delivered to at most f distinct relay nodes (i.e., each
packet has a limited redundancy f ) and should be received
in order at its destination. For the permutation traffic pattern
considered in this paper, there are in total n distinct traffic
flows. Without loss of generality, we focus on a tagged flow
in our discussion and use the S and D to denote the source
node and the destination node, respectively. The source S
labels each packet P of the tagged flow with a sequence
number SN(P ), while the destination D maintains a request
number RN(D) to indicate the sequence number of the packet
it is currently requesting. Notice that the sequence number
mechanism ensures that every packet is received in order at
the destination and also helps to remove the remnant copies
of those packets already received [11]. The overall 2HR-f
scheme is summarized as follows.
2HR-f Routing Scheme: When the source S wins the trans-

mission opportunity at the current time slot, S first overhears
the channel for a specified interval of time to check whether
the node D is inside the one-hop transmission range.
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1) If S hears the reply from D within the specified time
interval, it initiates a handshake with D and then trans-
mits a packet directly to D (“Source-to-Destination”
transmission);

2) If no broadcasting reply is overheard during the specified
time interval, a receiving node (say R) is randomly se-
lected among the nodes within the one-hop transmission
range of S based on a mechanism similar to the selection
of transmitting node. With probability 1/2, the S and R
then perform either the “Source-to-Relay” or “Relay-to-
Destination” transmission:
• Source-to-Relay: Suppose that the packet P is the
packet locally generated for which S is currently
delivering copies, S first initiates a handshake with
R to check whether R has already received a copy
of P before. If not, S delivers out a new copy of P
to R if only less than f copies of P have already
been delivered out from S by now; otherwise, S
remains idle for this time slot.

• Relay-to-Destination: S initiates a handshake with
R to check if S carries a packet P ∗ destined for
node R with SN(P ∗) = RN(R). If so, S delivers
the packet P ∗ to node R; otherwise, S remains idle
for this time slot.

IV. THROUGHPUT CAPACITY
In this section, we first introduce some basic probabilities

and use them to analyze the service time at the source node S
and at the destination node D, and then provide the analysis
and also related validation for throughput capacity.

A. Some Basic Probabilities
Lemma 1: For the tagged flow and a given time slot, we

use p1 and p2 to denote the probability that S conducts a
source-to-destination transmission and the probability that S
conducts a source-to-relay or relay-to-destination transmission,
respectively. By setting m = (2υ − 1)2, we have

p1 =
1

α2

{m− 1

n− 1

(
1−

(n− 1

n

)n−1)
+

1

n

(n− 1

n

)n−1}
(4)

p2 =
1

α2

{n−m

n− 1

(
1−

(n− 1

n

)n−1)
−

(n−m

n

)n−1}
(5)

Lemma 2: For the tagged flow, suppose that the source S is
delivering copies for some packet P in the current time slot,
the destination D is also requesting for P , i.e., SN(P ) =
RN(D), and there are already j (1 ≤ j ≤ f + 1) copies of
P in the network (including the original one at S). For the
next time slot, we use pr(j) to denote the probability that D
will receive P , use pd(j) to denote the probability that S will
successfully deliver out a copy of P to some new relay (if
j ≤ f ). Then we have

pr(j) = p1 +
j − 1

2(n− 2)
p2 (6)

pd(j) =
n− j − 1

2(n− 2)
p2 (7)

The proofs of Lemmas 1 and 2 can be found in [28].

Fig. 2. Illustration of the local queue at the source S and the virtual queue
at the destination D.

B. Service Time at Source S and Destination D

Before deriving the service time at S and D, we first define
the following two queues. As shown in Fig. 2 that the first
queue is a local queue at the source S, which stores the locally
generated packets and operates as follows: every time a local
packet arrives at S, it is put to the end of the queue; every time
S finishes the copy dispatching for the head-of-line packet,
S takes it out of the queue and moves ahead the remaining
packets behind it. Thus, the head-of-line packet of the queue
is the one for which S is currently distributing copies.
The second queue is a virtual queue defined at the desti-

nation D. As shown in Fig. 2, the virtual queue stores only
the sequence numbers of those packets not received yet by
D and operates as follows: every time a packet P is moved
to the head-of-line of the local queue at S, the corresponding
packet sequence number SN(P ) is put to the end of the virtual
queue; every timeD receives a packet whose sequence number
equals to the head-of-line entry, D moves the head-of-line
entry out of the virtual queue and moves ahead the remaining
entries. Thus, the head-of-line entry of the virtual queue is the
sequence number of the packet that D is currently requesting
for, i.e., the RN(D).
The service time at S and D can then be defined as follows:
Definition 1: For a packet P of the tagged flow, its service

time at the source S is defined as the time elapsed between
the time slot when S starts to deliver copies for P and the
time slot when S stops distributing copies for P .
Definition 2: For a packet P of the tagged flow, the service

time at the destination D is defined as the time elapsed
between the time slot when D starts to request for P and
the time slot when D receives P .
For a packet P of the tagged flow, suppose that there are

k copies of P in the network when its destination D starts to
request for P , 1 ≤ k ≤ f + 1. If we denote by state A the
absorbing state (i.e., the termination of the service process)
for P , then the service processes for the packet P at its
source S and at its destination D can be defined by two finite-
state absorbing Markov chains shown in Fig. 3a and Fig. 3b,
respectively.
Suppose that there are k copies of P in the network when

D starts to request for the packet, we denote by XS(k) and
XD(k) the corresponding service time of the packet at S and
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(a) Absorbing Markov chain for the packet distribution process at
the source node S.

(b) Absorbing Markov chain for the packet recep-
tion process at the destination node D.

Fig. 3. Absorbing Markov chains for a packet P of the tagged flow, given
that D starts to request for P when there are already k copies of P in the
network. For each transient state, the transition back to itself is not shown for
simplicity.

D, respectively 1. From the theory of Markov chain [29] we
know that the XS(k) is the time the Markov chain in Fig. 3a
takes to become absorbed given that the chain starts from the
state 1, and the XD(k) is the time the Markov chain in Fig. 3b
takes to become absorbed given that the chain starts from the
state k.
Lemma 3: For a packet P of the tagged flow, suppose that

there are k copies of P in the network when the destination
D starts to request for P , 1 ≤ k ≤ f + 1, then we have

E{XS(k)} =

⎧⎪⎨
⎪⎩

∑k−1
i=1

1
pd(i) + 1

p1+pd(k)

·(1 +
∑f−k

j=1 φ1(k, j)
)
if 1 ≤ k ≤ f,∑f

i=1
1

pd(i) if k = f + 1.
(8)

E{XD(k)} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
p1+p2/2

(
1 +

∑f−k
j=1 φ2(k, j)

+ pd(f)
pr(f+1)φ2(k, f − k)

)
if 1 ≤ k ≤ f − 1,

1
p1+p2/2

(
1 + pd(f)

pr(f+1)

)
if k = f,

1
pr(f+1) if k = f + 1.

(9)
where

φ1(k, j) =

j∏
t=1

pd(k + t− 1)

p1 + pd(k + t)

φ2(k, j) =

j∏
t=1

pd(k + t− 1)

p1 + p2/2

Lemma 4: For any 1 ≤ k ≤ f , we have

E{XS(k)} < E{XS(k + 1)} (10)
E{XD(k)} > E{XD(k + 1)} (11)

For the tagged flow, if we further denote by XS the average
service time of all packets locally generated at the source S,
and denote by XD the average service time of all packets

1The XS(f + 1) corresponds to the case that D starts to request for the
packet P from the state that there are f + 1 copies in the network, i.e., the
f copies of P have already been distributed.

Fig. 4. Illustration of the automatic feedback control system defined for
the packet delivery process of the tagged flow, where the parameter k is
automatically updated to adjust to the service rates at the S and D.

received at the destination D, then we can establish the
following result based on Lemma 4.
Lemma 5: For any given transmission range parameter υ

and packet redundancy limit f , 1 ≤ υ ≤ �
√

n+1
2 �, 1 ≤ f ≤

n− 2, we have

E{XS(1)} ≤ XS ≤ E{XS(f + 1)} (12)

E{XD(f + 1)} ≤ XD ≤ E{XD(1)} (13)

For the proofs of the above lemmas, please refer to [28].

C. Per Node Throughput Capacity
For the tagged flow, suppose that currently packet P is the

head-of-line packet at the local queue of S, D just starts to
request for P and there are k (1 ≤ k ≤ f ) copies of P now in
the network. We further assume that the packet waiting right
behind P in the local queue is packet P ′, and D will start to
request for P ′ when there are k′ copies of P ′ in the network.
Then we have the following two cases:
• If E{XS(k)} ≤ E{XD(k)}, then in the average case
we have k′ ≥ k. According to (10) and (11), it fol-
lows that E{XS(k′)} ≥ E{XS(k)} and E{XD(k′)} ≤
E{XD(k)}. Then we have

E{XD(k′)−XS(k′)} ≤ E{XD(k)−XS(k)} (14)
The above condition indicates that statistically the ex-
pected gap between the service time at the destination
and the service time at the source tends to reduce. Since
(14) also holds for the packets (if any) waiting behind P ′,
we can see that the XS and XD (and thus the average
service rates at S and D) will gradually approach each
other until a balance is achieved 2.

• If E{XS(k)} > E{XD(k)}, on average we then have
k′ < k. Similar to the above case, it follows that

E{XS(k′)−XD(k′)} < E{XS(k)−XD(k)} (15)
This condition indicates that statistically the service time
at S tends to decrease while the service time at D tends
to increase, thus the network system will gradually evolve
towards a stable state.

2As we will show later that since the server for the local queue at S and
the server for the virtual queue at D may have vacancy time, even in the
case that the two average service rates 1/XS and 1/XD can not achieve a
balance, the network system may still be stabilized as long as the input rate
λ is feasible.



6

The above analysis indicates that under the 2HR-f routing
scheme, the parameter k is automatically updated from packet
to packet to adjust to the service rates at the S and D. Based
on this intrinsic feature of automatic updating for parameter k,
we can model the packet delivery process of the tagged flow as
an automatic feedback control system shown in Fig. 4, where
the packet dispatching process at S and the packet receiving
process at D can be defined by the two absorbing Markov
chains in Fig. 3a and Fig. 3b, respectively3.
Now we are ready to derive the throughput capacity for

the tagged flow. We first denote by VS the long-term average
packet dispatching rate at S and denote by VD the long-term
average packet receiving rate at D, where

VS = lim
t→∞

the number of dispatched packets at S

t
(16)

VD = lim
t→∞

the number of received packets at D

t
(17)

We then have the following result.
Lemma 6: For the tagged flow and any given parameters of

υ and f , we have

VS ≤ 1

E{XS(1)} (18)

VD ≤ 1

E{XD(f + 1)} (19)

Proof: We first prove (18). For the local queue at the
source S, suppose that during some time interval t node S
has successfully served a total of NS(t) locally generated
packets (i.e., S has distributed copies for NS(t) local packets).
According to the definition in (16), we have

VS = lim
t→∞

NS(t)

t
(20)

Notice that during the time interval t, the local queue may
be empty and thus the queue server at S may become idle.
Denote by IS(t) the accumulated vacancy time at S during
the time interval t, then we have

XS = lim
t→∞

t− IS(t)

NS(t)
(21)

Since IS(t) ≥ 0, combining the (20) and (21), we have

VS ≤ 1

XS

(22)

Substituting (12) into (22), (18) then follows. After a similar
derivation, (19) also follows.
We now can establish the following main result on per node

throughput capacity.

3Notice that for a packet P of the tagged flow, its corresponding parameter
k depends only on the delivery process of the last packet received just before
the P . Thus, for the automatic feedback control system in Fig. 4, the parameter
k will be automatically updated for each packet and there is no need for any
extra transmissions to deliver the parameter k between S and D.

Theorem 1: Consider a cell partitioned MANET, where
nodes move according to the i.i.d. mobility model, each
node could transmit to the cells with horizontal and vertical
distance no more than υ − 1 cells away from its current cell,
1 ≤ υ ≤ �

√
n+1
2 �, and each packet follows the 2HR-f routing

scheme, 1 ≤ f ≤ n− 2. If we denote by μ(υ, f) the per node
(flow) throughput capacity, i.e., the network can stably support
any input rate λ ≤ μ(υ, f), then we have

μ(υ, f) = min

{
p1 +

f

2(n− 2)
p2,

p1 + p2/2

1 +
∑f−1

j=1

∏j
t=1

(n−t−1)p2

2(n−2)p1+(n−t−2)p2

}
(23)

Proof: For the tagged flow, as its packet delivery process
can be defined by the automatic feedback control system in
Fig. 4, we can see that if the network is stable (i.e., the queue
length at each node will not go to infinity) under the input
rate λ, then we have

λ = VS = VD (24)

This is due to the fact that in a stable control system, the
long-term average rate of the input traffic is equal to that of
the output one.
Based on (18) and (19), we then have

λ ≤ min

{
1

E{XS(1)} ,
1

E{XD(f + 1)}
}

(25)

After substituting (8) and (9) into (25), (23) follows.

D. Model Validation
To validate our theoretical per node throughput capacity,

a dedicated simulator in C++ was developed, which is now
available at [30]. In our simulation, the traffic flow originated
from each node is assumed to be a Poisson stream, and, similar
to the settings in [31], the guard factor Δ is fixed as Δ = 1
here. In addition to the i.i.d. mobility model considered in this
paper, we also implemented the simulations for the popular
random walk and random waypoint models:
• Random Walk Model [5]: At the beginning of each time
slot, each node independently makes a decision regarding
its mobility action, either staying inside its current cell
or moving to one of its eight adjacent cells. Each action
happens with the same probability of 1/9.

• Random Waypoint Model [18]: At the beginning of
each time slot, each node independently and randomly
generates a two-dimensional vector ννν = [νx, νy], where
the values of νx and νy are uniformly drawn from
[1/
√

n, 3/
√

n]. The node then moves a distance of νx

along the horizontal direction and a distance of νy along
the vertical direction.

In our simulation, we consider both a smaller network with
n = 64, f = 3 and υ = {1, 4} and a larger network with
n = 256, f = 6 and υ = {1, 6}. The corresponding simulation
results are summarized in Fig. 5 and Fig. 6, where all the
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(a) Network scenario (n = 64, f = 3, υ = 4) with
μ(4, 3) = 7.60 × 10−3 (packets/slot).

(b) Network scenario (n = 64, f = 3, υ = 1) with
μ(1, 3) = 7.53 × 10−4 (packets/slot).

Fig. 5. The expected end-to-end packet delay for n = 64.

results are reported with the 95% confidence interval. Figs. 5
and 6 indicate clearly that our theoretical models can precisely
depict the throughput capacity of a MANET under the packet
redundancy control and the transmission range control. As can
be observed from these two figures that when the system load
ρ = λ/μ approaches to 1 (i.e., when the traffic input rate λ
approaches the throughput capacity μ), the packet delay rises
up sharply and becomes extremely sensitive to the variations of
ρ. Such skyrocketing behavior of packet delay as ρ approaches
1 serves as an intuitive validation for the throughput capacity
determined by our theoretical model.
It is also interesting to notice from Figs. 5 and 6 that

the networks we consider here actually exhibit very similar
behaviors under either the i.i.d. model, the random walk model
or the random waypoint model. In this sense, our theoretical
throughput capacity model, although was developed under the
i.i.d. mobility model, can also be used to nicely capture the
network behaviors under the random walk and the random
waypoint models as well.

V. THROUGHPUT OPTIMIZATION
Based on the new theoretical capacity model, we further

explore the following throughput optimization problem.
Throughput Optimization Problem: For a 2HR-f -based

MANET with a fixed transmission range υ for each node,

(a) Network scenario (n = 256, f = 6, υ = 6) with
μ(6, 6) = 1.17 × 10−3 (packets/slot).

(b) Network scenario (n = 256, f = 6, υ = 1) with
μ(1, 6) = 2.84 × 10−4 (packets/slot).

Fig. 6. The expected end-to-end packet delay for n = 256.

calculate its maximum per node throughput capacity for any
value of f .
For a fixed transmission range υ, if we denote by μ∗ the

corresponding maximum per node throughput capacity, then
the throughput optimization problem can be formulated as

μ∗ = max
f
{μ(υ, f)}

= max min

{
1

E{XS(1)} ,
1

E{XD(f + 1)}
}

(26)

subject to:

1 ≤ f ≤ n− 2, 1 ≤ υ ≤ �
√

n + 1

2
�

where the E{XS(1)} and E{XD(f + 1)} are defined in (8)
and (9), respectively.
Regarding the solution of this optimization problem, we

have the following result.
Lemma 7: For any given υ ∈ [1, �

√
n+1
2 �], we have

μ∗ = max

{
1

E{XD(f + 1)}∣∣
f=f0

,
1

E{XS(1)}∣∣
f=f1

}
(27)
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where

f0 = max
{

f | E{XS(1)} ≤ E{XD(f + 1)}
}

(28)

f1 = min
{

f | E{XD(f + 1)} ≤ E{XS(1)}
}

(29)

Proof: We first prove that f0 and f1 defined above do
exist. According to (8) and (9), we have

E{XS(1)}|f=1 =
1

p1 + pd(1)

≤ 1

p1 + p2

2(n−2)

= E{XD(f + 1)}|f=1 (30)

Notice that

E{XS(1)}|f=n−2

=
1

p1 + p2/2

(
1 +

n−3∑
j=1

j∏
t=1

(n− t− 1)p2

2(n− 2)p1 + (n− t− 2)p2

)

≥ 1

p1 + p2/2
= E{XD(f + 1)}|f=n−2 (31)

It is easy to see from (8) and (9) that as f increases, the
E{XS(1)} monotonically increases while the E{XD(f + 1)}
monotonically decreases. Combining with the results in (30)
and (31), we can see that the f0 and f1 defined above do exist.
From (25) we know that

μ(υ, f) =

{
1/E{XD(f + 1)} if 1 ≤ f ≤ f0,

1/E{XS(1)} if f1 ≤ f ≤ n− 2.
(32)

Thus, (27) can be derived directly based on (32). The above
results indicate that for a MANET with a fixed υ, there exists
an optimum setting of f (f0 or f1) to achieve the optimal per
node throughput capacity μ∗.
To illustrate the optimal throughput capacity μ∗, we show

in Fig. 7a and Fig. 7b that for υ = {1, 2, 3}, how μ∗ and
the corresponding optimum setting of f vary with network
size n. Fig. 7a shows clearly that for all the three settings of
υ here, although the corresponding μ∗ all decrease quickly as
the network size increases, their varying tendencies with n are
actually different. A careful observation of Fig. 7a indicates
that among the three settings of υ here, the μ∗ of the case
υ = 3 decreases most dramatically with n while the one of
the case υ = 1 decreases least significantly with n. It is also
interesting to notice that when n ≤ 143, the μ∗ of the case
υ = 3 is always the greatest one among that of all three cases,
while the μ∗ of the case υ = 1 becomes the greatest one when
n is larger than 270. The results in Fig. 7b show that for a
given υ, the corresponding optimum setting of f is actually
a piecewise function of n. We can also see from the figure
that for each network size n, the optimum setting of f of the
case υ = 3 is the smallest one among that of all three cases.
This can be intuitively interpreted as follows. For one given
network, if a bigger υ (and thus a larger transmission range)
is adopted, a node will have higher probability to meet its
destination or relay nodes and thus can deliver packets more

(a) The maximum throughput capacity μ∗ vs. n

(b) The optimum setting of f vs. n

Fig. 7. The maximum throughput capacity μ∗ and the corresponding
optimum setting of f for networks with n varying from 64 to 1024.

Fig. 8. The throughput capacity μ∗ vs. node transmission region υ.

fast, resulting in a fewer number of redundant copies for each
packet before it arrives at its destination.
To further explore how υ affects μ∗, we summarize

in Fig. 8 how μ∗ varies with υ for networks of n =
{225, 441, 625, 900}. It is interesting to see that, for each
network scenario here, as υ increases μ∗ always first decreases
and then increases. This is because that the effect of increasing
υ is two-fold: on one hand, it increases the probability that a
node meets the destination or relay nodes, but on the other
hand it decreases the number of simultaneous transmissions.
As illustrated in Fig. 8 that when υ is small, the latter negative
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effect dominates, while as υ gradually increases, the former
positive effect becomes the dominant one. It is further noticed
that for the cases n = 225, n = 441 and n = 625, μ∗

does not increase any more when υ increases beyond some
threshold (υ = 8, 11 and 13, respectively), where a node is
able to cover the whole network region. It is notable that the
results in both Fig. 8 and Fig. 7a actually imply a fact that for
the network scenarios considered in this paper, we may have
a very significant per node throughput capacity improvement
and may achieve its maximum possible value through adopting
a bigger υ (and thus a larger transmission range) for each node,
which is different from what is generally believed in literature
that a smaller υ usually results in a higher throughput capacity.

VI. CONCLUSION
Distinguished from the available works which mainly focus

on deriving the order sense results and exploring the scaling
laws of the throughput capacity in MANETs, this paper
addressed another basic problem: for a MANET with gen-
eral node transmission range control and packet redundancy
control, what is the exact achievable per node throughput
capacity. We found that for the network scenarios considered
in this paper, it may not be always true that adopting local
transmission can achieve the maximum per node throughput
capacity, as what is generally believed in literature. This
finding indicates that further deliberate studies are necessary
to reveal the real achievable network throughput of MANETs.
Another interesting finding of our work is that the MANETs
considered in this paper actually exhibit very similar behaviors
in terms of packet delay and per node throughput under
different node mobility models, like the i.i.d., random walk
and random waypoint.

ACKNOWLEDGMENT
Part of this work was supported through the A3 Foresight

Program by the Japan Society for the Promotion of Science
(JSPS), the National Natural Science Foundation of China
(NSFC), and the National Research Foundation of Korea
(NRF).

REFERENCES
[1] J. Andrews, S. Shakkottai, R. Heath, N. Jindal, M. Haenggi, R. Berry,

D. Guo, M. Neely, S. Weber, S. Jafar, and A. Yener, “Rethinking
information theory for mobile ad hoc networks,” IEEE Communications
Magazine, vol. 46, no. 12, pp. 94–101, December 2008.

[2] A. Goldsmith, M. Effros, R. Koetter, M. Medard, A. Ozdaglar, and
L. Zheng, “Beyond shannon: The quest for fundamental performance
limits of wireless ad hoc networks,” IEEE Communications Magazine,
vol. 49, no. 5, pp. 195–205, May 2011.

[3] L. X. Cai, X. S. Shen, J. W. Mark, and L. Cai, “Capacity analysis
and mac enhancement for uwb broadband wireless access networks,”
Elsevier Computer Networks, vol. 51, no. 11, pp. 3265–3277, August
2007.

[4] M. Grossglauser and D. N. Tse, “Mobility increases the capacity of ad
hoc wireless networks,” in INFOCOM, 2001.

[5] A. E. Gamal, J. Mammen, B. Prabhakar, and D. Shah, “Optimal
throughput-delay scaling in wireless networks-part i: The fluid model,”
IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2568–
2592, June 2006.

[6] ——, “Throughput-delay trade-off in wireless networks,” in INFOCOM,
2004.

[7] J. Mammen and D. Shah, “Throughput and delay in random wireless
networks with restricted mobility,” IEEE Transactions on Information
Theory, vol. 53, no. 3, pp. 1108–1116, 2007.

[8] R. M. de Moraes, H. R. Sadjadpour, and J. Garcia-Luna-Aceves,
“Throughput-delay analysis of mobile ad-hoc networks with a multi-
copy relaying strategy,” in SECON, 2004.

[9] E. Perevalov and R. S. Blum, “Delay-limited throughput of ad hoc
networks,” IEEE Transactions on Communications, vol. 52, no. 11, pp.
1957–1968, November 2004.

[10] X. Lin, G. Sharma, R. R. Mazumdar, and N. B. Shroff, “Degenerate
delay-capacity tradeoffs in ad-hoc networks with brownian mobility,”
IEEE/ACM Transactions on Networking, Special Issue on Networking
and Information Theory, vol. 52, no. 6, pp. 2777–2784, June 2006.

[11] M. J. Neely and E. Modiano, “Capacity and delay tradeoffs for ad-hoc
mobile networks,” IEEE Transactions on Information Theory, vol. 51,
no. 6, pp. 1917–1936, June 2005.

[12] G. Sharma and R. Mazumdar, “Delay and capacity trade-off in
wireless ad hoc networks with random way-point mobility,” in Dept.
Elect. Comput. Eng., Purdue Univ.,West Lafayette, IN, 2005. [Online].
Available: http://ece.purdue.edu/∼gsharma/

[13] ——, “On achievable delay/capacity trade-offs in mobile ad hoc net-
works,” in Wiopt, 2004.

[14] J. Liu, X. Jiang, H. Nishiyama, and N. Kato, “Delay and capacity in ad
hoc mobile networks with f -cast relay algorithms,” IEEE Transactions
on Wireless Communications, vol. 10, no. 8, pp. 2738–2751, August
2011.

[15] M. Li and Y. Liu, “Rendered path: Range-free localization in anisotropic
sensor networks with holes,” in MobiCom, 2007.

[16] Z. Zhu, A. M.-C. So, and Y. Ye, “Universal rigidity: Towards accurate
and efficient localization of wireless networks,” in INFOCOM, 2010.

[17] L. Ying, S. Yang, and R. Srikant, “Optimal delay-throughput trade-offs
in mobile ad hoc networks,” IEEE Transactions on Information Theory,
vol. 54, no. 9, pp. 4119–4143, September 2008.

[18] S. Zhou and L. Ying, “On delay constrained multicast capacity of large-
scale mobile ad-hoc networks,” in INFOCOM, 2010.

[19] Y. Wang, X. Chu, X. Wang, and Y. Cheng, “Optimal multicast capacity
and delay tradeoffs in manets: A global perspective,” in INFOCOM,
2011.

[20] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE
Transactions on Information Theory, vol. 46, no. 2, pp. 388–404, March
2000.

[21] P. Gupta and P. R. Kumar, “Critical power for asymptotic connectivity
in wireless networks,” Stochastic Analysis, Control, Optimization and
Applications: A Volume in Honor of W.H. Fleming, W. M. McEneaney,
G. Yin, and Q. Zhang, pp. 547–566, 1998.

[22] P. Li, Y. Fang, and J. Li, “Throughput, delay, and mobility in wireless
ad-hoc networks,” in INFOCOM, 2010.

[23] M. Garetto, P. Giaccone, and E. Leonardi, “Capacity scaling in ad hoc
networks with heterogeneous mobile nodes: The subcritical regime,”
IEEE/ACM Transactions on Networking, vol. 17, no. 6, pp. 1888–1901,
December 2009.

[24] D. Ciullo, V. Martina, M. Garetto, and E. Leonardi, “Impact of correlated
mobility on delay-throughput performance in mobile ad-hoc networks,”
in INFOCOM, 2010.

[25] S. R. Kulkarni and P. Viswanath, “A deterministic approach to through-
put scaling in wireless networks,” IEEE Transactions on Information
Theory, vol. 50, no. 6, pp. 1041–1049, June 2004.

[26] C. Zhang, Y. Fang, and X. Zhu, “Throughput-delay tradeoffs in large-
scale manets with network coding,” in INFOCOM, 2010.

[27] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Efficient routing
in intermittently connected mobile networks: The multiple-copy case,”
IEEE/ACM Transactions on Networking, vol. 16, no. 1, pp. 77–90,
February 2008.

[28] J. Liu, X. Jiang, H. Nishiyama, and N. Kato, “Impact of power control
on throughput and delay in mobile ad hoc networks,” Graduate school
of information sciences, Tohoku university, 2011, technical report
201107.01. [Online]. Available: http://distplat.blogspot.com

[29] C. M. Grinstead and J. L. Snell, Introduction to Probability: Second
Revised Edition. American Mathematical Society, 1997.

[30] C++ simulator for the 2hr-f manet with power control. [Online].
Available: http://distplat.blogspot.com

[31] The network simulator ns-2. [Online]. Available:
http://www.isi.edu/nsnam/ns/


	Cover page
	Final Manuscript

