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Abstract—The lack of a thorough understanding of the funda-
mental performance limits in mobile ad hoc networks (MANETs),
remains a challenging roadblock stunting the commercialization
and application of such networks. In this paper, we consider a
MANET employing the two-hop relay algorithm and erasure
coding, and focus on the message delivery probability there.
Specifically, a finite-state absorbing Markov chain framework is
first developed to characterize the complicated message delivery
process in the challenging MANETs. Based on the developed
framework, closed-form expressions are further derived for the
message delivery probability under any given message lifetime
and message size by adopting the blocking matrix technique. As
verified through extensive simulation studies, the new framework
can be used to accurately predict the message delivery probability
behavior, and characterize its relationship with the message size,
replication factor and node density.

I. INTRODUCTION

A mobile ad hoc network (MANET) is a peer-to-peer
network without any pre-existing infrastructure or centralized
administration, which consists of fully self-organized mobile
nodes. As it can be rapidly deployed and flexibly reconfigured,
the MANET has found many promising applications, such
as the disaster relief, emergency response, daily information
exchange, etc., and thus becomes an indispensable component
among the next generation networks [1].

By now, a significant amount of work has been done for a
thorough understanding of the fundamental performance limits
in MANETs. It was proved that by employing a two-hop relay
algorithm (or its variant), a Θ(1) per node throughput can be
achieved under the i.i.d. mobility model [2], the random walk
model [3] and other mobility models [4]. The scaling laws of
packet delay in MANETs and its trade-off with the throughput
capacity have also been intensively addressed in literature, like
[5], [6]. Aside from these order sense results, more recently,
some closed-form results have also been reported for the
packet delivery delay [7], the end-to-end packet delay [8] and
the exact achievable throughput capacity [9]. In this paper, we
focus on the performance of message delivery probability in
MANETs.

It is noticed that there is some prior work addressing the
message delivery probability in literature. Panagakis et al. in
[10] analytically derived the message delivery probability of
the two-hop relay under a given time limit by approximating
the CDF of message delivery delay, where it is assumed

that for any node pair, the message can be successfully
transmitted whenever they meet each other. Whitbeck et al.
in [11] explored the impact of message size, message lifetime
and link lifetime on the message delivery ratio (probability)
of epidemic routing by treating the intermittently connected
mobile networks as edge-Markovian graphs, where each link
(edge) is considered independent and has the same transition
probabilities between “up” and “down” status.

Obviously, the available models in [10], [11] considered too
simple network scenarios and cannot be applied for the general
MANETs, where the interference and medium contention is-
sues are of significant importance and thus the network cannot
be simplified as edge-Markovian graphs. Furthermore, since
the number of data bits that can be successfully transmitted
during a node contact is actually limited and the buffer space
allocated at each mobile node may also be very limited, a
message may need to be split into multiple blocks such that
each block can be successfully transmitted during a contact
or stored at the relay buffer. In this paper, we develop closed-
form models for the message delivery probability in MANETs
with a careful consideration of the above important issues. The
main contributions of this paper are summarized as follows.

• We focus on the two-hop relay with erasure coding, where
a message at the source node is first erasure coded into
multiple frames (coded blocks) before transmitting. In
Section III, we develop a finite-state absorbing Markov
chain framework to model the complicated message
spreading process in the challenging MANETs.

• Based on the theoretical framework, we further derive
closed-form expressions in Section III for the correspond-
ing message delivery probability under any given message
lifetime and message size, where the important issues of
interference, medium contention and traffic contention in
MANETs are carefully incorporated into the analysis.

• In Section IV, extensive simulation studies are conducted
to validate our theoretical framework, which indicate that
the new framework can be used to accurately predict
the message delivery probability in MANETs with two-
hop relay and erasure coding, and characterize how the
parameters of message size, replication factor and node
density would affect the delivery probability there.



Fig. 1. Illustration of cell-partitioned network and cells in a transmission-
group with m = 16 and α = 4.

II. PRELIMINARIES

A. System Models
The considered mobile ad hoc network is a unit torus with

n mobile nodes. The torus is evenly divided into m×m equal
cells (or squares), each cell of side length 1/m as shown in
Fig. 1. Time is slotted, and nodes randomly roam from cell to
cell according to the i.i.d. mobility model [6]. At the beginning
of each time slot, each node randomly selects a destination cell
among the m2 cells, and then move inside and stay for a whole
time slot. Similar to [5], we assume that a whole time slot will
be allocated only for data transmissions in one hop range.
Each node employs a common transmission range r, and
the protocol model with guard factor Δ (a positive constant
representing the guard zone) [12] is adopted to address the
interference among simultaneous transmitting links.

In order to fully characterize the traffic contention issue in
MANETs, we consider here the permutation traffic pattern [7],
where each node has a locally generated message to deliver to
its destination node and also needs to receive another message
originated from some other node. It is easy to see that there
are in total n distinct traffic flows. Without loss of generality,
we focus on a tagged flow hereafter and denote its source and
destination by S and D, respectively.

For the tagged flow, the message generated at the source
S is assumed to have in total ω blocks (ω ≥ 1), where a
single block can be successfully transmitted during a time slot
(or meeting duration). We further assume that the message is
relevant during τ time slots, i.e., the message is labeled with
a lifetime of τ time slots after it is generated at S, and will
be dropped from the network if it fails to make itself to the
destination D within τ time slots.

B. Two-Hop Relay with Erasure Coding
According to the two-hop relay algorithm with erasure

coding [13], [14], for the tagged flow, the message is first
erasure coded into ω · β equal sized frames (or code blocks)
after it is locally generated at S, where β is the replication
factor. Since each frame is almost the same size as the original
block, it can also be successfully transmitted during a time slot.
Any (1+ ε) ·ω frames can be used to successfully reconstruct
the message, where ε is a small constant and it varies with
the adopted erasure coding algorithm. Similar to [13], [14],

we ignore the constant ε here and thus the message can be
successfully recovered at the destination D with no less than
ω frames collected before it expires (or within τ time slots).

After erasure coding the message into ω · β frames, the
source node S starts to deliver out these frames according to
the two-hop relay algorithm [2], [5], [6]. Every time S wins
a transmitting opportunity, it operates as follows:

Step 1: S first checks whether D is in the transmission
range. If so, S conducts with D the “source-to-destination”
transmission, where a frame (if not expired) is sent to D.

Step 2: Otherwise, S randomly selects a node, say R,
from the one-hop neighborhood as the receiver, and then
conducts with R either the “source-to-relay” transmission or
the “relay-to-destination” transmission with equal probability.
In the “source-to-relay” transmission, S acts as a source and
sends to R a frame (if not expired) destined for D; while in
the “relay-to-destination” transmission, S acts as a relay and
forwards to R a frame (if available) destined for R.

Notice that in the frame distribution process at node S, each
frame will be delivered to at most one relay node, and each
relay node will also carry at most one frame from S.

C. Transmission Scheduling
Similar to previous studies [5], [7], [15], we consider a

local transmission scenario where a transmitter in some cell
can only transmit to receivers in the same cell or other eight
adjacent cells (two cells are called adjacent cells if they
share a common point). Thus, the transmission range can
be accordingly determined as r =

√
8/m. It is easy to see

that two links can transmit simultaneously if and only if they
are sufficiently far away from each other. To avoid collisions
among simultaneous transmitting links and support as many
simultaneous link transmissions as possible, we adopt here the
transmission-group based scheduling scheme [5], [15].

Transmission-group: A transmission-group is a subset of
cells where any two of them have a vertical and horizontal
distance of some multiple of α cells and all the cells there
could transmit simultaneously without interfering with each
other.

With such a transmission-group definition, all m2 cells are
actually divided into α2 distinct transmission-groups. If each
transmission-group becomes active (i.e., has link transmis-
sions) alternatively, then each cell will also become active
every α2 time slots. As illustrated in Fig. 1 for the case α = 4,
there are in total 16 transmission-groups, and all shaded cells
belong to the same transmission-group.

Setting of Parameter α: As shown in Fig. 1, suppose node
S in an active cell is transmitting to node V in some time slot.
It is easy to see that another transmitter, say U , in some other
active cell is at least α−2 cells away from V . According to the
protocol interference model [12], we should have (α−2)· 1

m
≥

(1+Δ) ·r to ensure the successful data reception at V . Notice
that α ≤ m and r =

√
8/m, then the parameter α can be

determined as

α = min{�(1 + Δ)
√
8 + 2�,m} (1)



III. MESSAGE DELIVERY PROBABILITY

A. Some Basic Probabilities
Before proceeding to introduce the Markov chain theoretical

framework and derive the expected message delivery proba-
bility, we first present here some basic probabilities under the
two-hop relay with erasure coding.

Lemma 1: For a time slot and the tagged flow, if we denote
by p1 the probability that S conducts a “source-to-destination”
transmission with the destination node D and denote by p2 the
probability that S conducts a “source-to-relay” transmission or
“relay-to-destination” transmission with some other node, then
we have

p1 =
1

α2

(
9n−m2

n(n− 1)
−
(
1− 1

m2

)n−1
8n+ 1−m2

n(n− 1)

)
(2)

p2 =
1

α2

(
m2 − 9

n− 1

(
1−

(
1− 1

m2

)n−1)
−
(
1− 9

m2

)n−1)

(3)
Lemma 2: For a time slot and the tagged flow, given that

there are t1 relay nodes each carrying a frame from the source
node S and t2 relay nodes carrying no frames from S, we
denote by pr(t1), pd(t2) and ps(t1, t2) the probability that the
destination node D will receive a frame, the probability that S
will successfully deliver out a frame to some new relay node
(if t1 < ω · β), and the probability of simultaneous “relay-to-
destination” transmission (where D obtains a frame from the
t1 relay nodes) and “source-to-relay” transmission (where S
delivers out a frame to the t2 relay nodes) in the next time
slot. Then we have

pr(t1) = p1 +
t1

2(n− 2)
p2 (4)

pd(t2) =
t2

2(n− 2)
p2 (5)

ps(t1, t2) =
t1t2(m

2 − α2)

4m2α4

n−5∑
k=0

(
n− 5

k

)
h(k)

·
{ n−4−k∑

t=0

(
n− 4− k

t

)
h(t)

(
1− 18

m2

)n−4−k−t
}

(6)

where

h(x) =
9
(

9
m2

)x+1 − 8
(

8
m2

)x+1

(x+ 1)(x+ 2)
(7)

The derivations of (2), (3), (4), (5) and (6) are omitted here
due to space limit, and please refer to [7] for details.

B. Markov Chain Framework
For the tagged flow, as the message generated at the source

node S is erasure coded into ω·β frames and is relevant only in
τ time slots, the destination node D needs to collect at least
ω frames within τ time slots so as to successfully recover
the message. If we denote by (j, k) a general transient state

(a) SR Transition Case (b) RD Transition Case

(c) SR+RD Transition Case (d) SD Transition Case

Fig. 2. Transition cases of a general transient state (j, k), where 1 ≤ j ≤

ω · β, 0 ≤ k < ω, k < j.

during the message delivery process that S is delivering the jth
frame and D has already received k distinct frames, and further
denote by (∗, k) a transient state that S has already finished
dispatching all ω · β frames while D has only received k of
them, 1 ≤ j ≤ ω ·β, 0 ≤ k < ω, then we can characterize the
message delivery process with a finite-state absorbing Markov
chain. Specifically, if the tagged flow is in state (j, k) at the
current time slot, only one of the following four transition
cases illustrated in Fig. 2 may happen in the next time slot.

• SR Case: “source-to-relay” transmission only, i.e., S
successfully delivers the jth frame to a new relay node
while none of the relays delivers a frame to D. As shown
in Fig. 2a that under such a transition case, the state (j, k)
may transit to two different neighboring states depending
on the current frame index j.

• RD Case: “relay-to-destination” transmission only, i.e.,
some rely node successfully delivers a frame to D while
S fails to deliver out the jth frame to a new relay node.
As shown in Fig. 2b that there is only one target state
(j, k + 1) under the RD case.

• SR+RD Case: both “source-to-relay” and “relay-to-
destination” transmissions, i.e., these two transmissions
happen simultaneously. We can see from Fig. 2c that
depending on the value of j there are two possible target
states under the SR+RD case.

• SD Case: “source-to-destination” transmission only, i.e.,
S successfully delivers a frame to D. As shown in Fig. 2d
that under the SD case, the state (j, k) may transit to
(j + 1, k + 1) or (∗, k + 1), similar to that under the
SR+RD case.

If we denote by A the absorbing state that the destination
node D has collected ω distinct frames, then the transition
diagrams in Fig. 2 indicate that the message delivery pro-
cess can be modeled as a discrete-time finite-state absorbing
Markov chain illustrated in Fig. 3, where Figs. 3a and 3b
each represents some cases of the full chain. Specifically,
Fig. 3a represents the cases that D may receive at most
one more frame given that it has already received k frames,
0 ≤ k ≤ ω − 2; Fig. 3b shows the transition diagrams
of how D may receive the last frame. The transitions of



(a) State transition diagram for 0 ≤ k ≤ ω − 2

(b) State transition diagram for k = ω − 1

Fig. 3. Transition diagram of the Markov chain for the message delivery
process. For each transient state, the transition back to itself is not shown for
simplicity.

SR, RD, SD and SR+RD in Fig. 3 correspond to two-
hop transmissions of “source-to-relay”, “relay-to-destination”,
“source-to-destination” and both “source-to-relay” and “relay-
to-destination”, respectively.

As shown in Fig. 3, there are in total ω rows of transient
states, with Lk transient states in the kth (0 ≤ k ≤ ω − 1)
row, where

Lk = ω · β − k + 1 (8)

Therefore, the total number of transient states δ in Fig. 3 can
be determined as

δ =
ω

2
(2ω · β − ω + 3) (9)

Consider the tth transient state of the kth row in the Markov
chain of Fig. 3, 0 ≤ k ≤ ω − 1, 1 ≤ t ≤ Lk, if we denote
by ur the number of relay nodes each carrying a frame from
node S, and denote by uo the number of relay nodes carrying
no frames from S, then we have

ur = t− 1 (10)
uo = n− t− 1 (11)

C. Derivations of Delivery Probability ϕ(ω, β, τ)

Before deriving the message delivery probability, we first
introduce the following definition.

Definition 1: For a message locally generated at the source
node S which is further erasure coded into ω · β frames, the
delivery delay of the message is defined as the time elapsed
between the time slot when S starts to deliver the first frame
of the message and the time slot when the destination node D
receives the ωth frame (i.e., when the destination D is able to
recover the message).

For the tagged flow, if we denote by Td the message
delivery delay and denote by ϕ(ω, β, τ) the message delivery
probability under the message lifetime constraint τ , then we
have

ϕ(ω, β, τ) = Pr(Td ≤ τ) =

τ∑
t=1

Pr(Td = t) (12)

Based on the Markov chain framework, now we are ready
to derive ϕ(ω, β, τ). As shown in Fig. 3, all δ transient states
in the Markov chain are arranged into ω rows. We number
these transient states sequentially as 1, 2, . . . , δ in a left-to-
right and top-to-down way. For these transient states, if we
let qij denote the transition probability from state i to state
j, then we can define a matrix Q = (qij)δ×δ of transition
probabilities among δ transient states there. Similarly, if we
let bi denote the one-step transition probability from state i
to the absorbing state A, then we can also define a vector
B = (bi)δ×1 representing the transition probabilities from δ
transient states to state A.

Notice that Pr(Td = t) in (12) denotes the probability that
the ωth frame arrives at the destination D by the end of the
tth time slot, i.e., the probability that the Markov chain gets
absorbed by the end of the tth time slot. Given that the Markov
chain starts from the first state, i.e., state (1, 0), according to
the Markov chain theory [16], then we have

Pr(Td = t) =
δ∑

i=1

q
(t−1)
1i · bi (13)

where q
(t)
ij denotes the probability that by the end of the tth

time slot the Markov chain is in the jth state given that the
Markov chain starts from the ith state.

Combining with the fact that q
(t)
ij is actually the ij-entry

of the matrix Qt, i.e., Qt = (q
(t)
ij )δ×δ , (13) can be further

transformed as

Pr(Td = t) = e ·Qt−1 ·B (14)

where e = {1, 0, . . . , 0}.
Substituting (14) into (12), then we have

ϕ(ω, β, τ) =

τ∑
t=1

e ·Qt−1 ·B

= e · (I−Q)−1 · (I−Qτ ) ·B
= e ·N · (I−Qτ ) ·B (15)

where I is the identity matrix, and N = (I − Q)−1 is the
fundamental matrix of the Markov chain in Fig. 3.

From (15) we can see that in order to derive the message
delivery probability ϕ(ω, β, τ), the only remaining issue is to
derive the matrices Q, N and B, as introduced in the following
section.

D. Derivations of Matrices Q, N and B

Notice that for the Markov chain in Fig. 3, the transitions
happen only among transient states of the same row or



neighboring rows, and thus the matrix Q can be defined as

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q0 Q
′

0

Q1 Q
′

1

. . . . . .
Qk Q

′

k

. . . . . .
Qω−2 Q

′

ω−2

Qω−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

where the block (or sub-matrix) Qk of size Lk×Lk defines the
probabilities of transitions among the kth row of the Markov
chain, Q

′

k of size Lk × Lk+1 defines the probabilities of
transitions from the kth row to the (k+1)th row, and all other
blocks are zero matrices and thus omitted here for simplicity.

Now we proceed to derive the blocks {Qk} and {Q′

k}.
Definitions of Qk: Let Qk(i, j) denote the ij-entry of the

block Qk, i, j ∈ [1, Lk], then the non-zero entries of Qk can
be defined as:

Qk(i, i) =

⎧⎪⎨
⎪⎩
1 + ps(ur, uo)− pr(ur)− pd(uo)

if 1 ≤ i < Lk

1− pr(ur) if i = Lk

(17)

Qk(i, i+ 1) = pd(uo)− ps(ur, uo) if 1 ≤ i < Lk (18)

Definitions of Q
′

k: The block Q
′

k is of size Lk × Lk+1,
where its non-zero ij-entry Q

′

k(i, j) is defined as follows.

Q
′

k(i, i) = p1 + ps(ur, uo) if 1 ≤ i < Lk (19)

Q
′

k(i, i− 1) =

⎧⎪⎨
⎪⎩
pr(ur)− p1 − ps(ur, uo)

if 2 ≤ i < Lk

pr(ur) if i = Lk

(20)

Since the fundamental matrix N = (I−Q)
−1, we can

derive N based on the matrix Q. Please refer to [7] for the
details of derivation for matrix N.

Now we proceed to define the matrix B. It is easy to see
that B can also be defined as

B = (0,0, . . . ,Bω−1)
T (21)

where 0 is the zero matrix.
Definitions of Bω−1: The block Bω−1 is of size Lω−1×1,

where its non-zero ij-entry Bω−1(i, j) can be defined as:

Bω−1(i, 1) = pr(ur) if 1 ≤ i ≤ Lω−1 (22)

Combining (15), (16), (17), (18), (19), (20), (21) and (22),
then we get matrices Q, N and B, and thus the message
delivery probability ϕ(ω, β, τ).
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Fig. 4. Comparisons between simulation results and theoretical ones under
the network scenarios of (m = 8, n = 60, ω = 4, β = 2) and (m =
16, n = 160, ω = 3, β = 6).

IV. NUMERICAL RESULTS

A. Simulation Settings
A specific simulator was developed to simulate the message

delivery process under the two-hop relay algorithm with
erasure coding, which is now available at [17]. Similar to
the settings in [18], Δ is fixed as Δ = 1 and thus the
transmission-group is defined with α = min{8,m}. For
each network setting of (m,n, ω, β, τ), the simulated message
delivery probability was calculated as the average value of 102
batches of simulation results, where each batch consists of 104
random and independent simulations.

B. Model Validation
Extensive simulation studies have been conducted to vali-

date the Markov chain theoretical framework developed for the
message delivery probability under a given message lifetime
τ . Here only two network scenarios, (m = 8, n = 60, ω =
4, β = 2) and (m = 16, n = 160, ω = 3, β = 6), were
presented and the results of other scenarios can also be easily
obtained by our simulator as well [17]. The corresponding
simulation and theoretical results were summarized in Fig. 4.
Fig. 4 indicates clearly that for both the network scenarios
there, the simulation results match nicely with the theoretical
ones, so our framework can be used to efficiently model
the message delivery process and accurately characterize the
message delivery probability.

C. Performance Analysis
Based on the developed theoretical framework, now we

proceed to explore the impact of message size ω on the
message delivery probability ϕ(ω, β, τ). With m and τ fixed as
m = 8 and τ = 3000, two network settings (n = 100, β = 4)
and (n = 45, β = 2) were examined. One can easily observe
from Fig. 5 that, the message delivery probability diminishes
quickly as the message size ω increases up. For example, for
the setting of n = 100, β = 4, the message delivery probability
at ω = 2 is 0.88, which is almost 5.18 times that of ω = 6
(0.17). A further careful observation of Fig. 5 indicates that
the message delivery probability of n = 100, β = 4 is almost
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Fig. 5. Impact of message size ω on the message delivery probability under
the setting m = 8, τ = 3000.
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Fig. 6. Impact of replication factor β on the message delivery probability
under the setting m = 16, τ = 6000.

0 (0.04) as ω approaches 8, while that of n = 45, β = 2
remains 0.32 at ω = 8. Combining with Fig. 4 the message
lifetime τ , therefore, should be carefully tuned according to
the message size ω, replication factor β and node density (i.e.,
n/m2) so as to guarantee a specified message delivery.

Fig. 6 illustrates how the replication factor β will affect the
message delivery probability ϕ(ω, β, τ). It is easy to see that
for both settings of (n = 160, ω = 6) and (n = 200, ω = 4)
there, the message delivery probability ϕ(ω, β, τ) monotoni-
cally increases with β. It is interesting to observe from Fig. 6
that, the slope of each curve (i.e., the increasing tendency)
decreases as β increases up, and there exists some threshold
value of β, beyond which the message delivery probability
performance has almost no improvement. Specifically, for the
setting n = 160, ω = 6, the message delivery probability
remains nearly unchanged as 0.46 when β ≥ 6.

V. CONCLUSION

In this paper, we have investigated the message delivery
probability in MANETs adopting the two-hop relay algorithm
with erasure coding. A general Markov chain theoretical
framework was developed to characterize the message delivery
process, based on which closed-form expressions were derived
for the message delivery probability under any given message
lifetime and message size. As verified by extensive simulation

studies, our framework can be used to efficiently model the
message delivery process and thus accurately characterize the
message delivery probability there. Our results indicate that
the message lifetime parameter τ should be carefully tuned
according to the message size ω, replication factor β and node
density so as to guarantee a specified delivery performance.
Furthermore, in a given MANET there exists some threshold
value for the replication factor β, beyond which the message
delivery probability cannot be improved any more.
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