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Abstract—This paper focuses on the per node throughput
capacity in mobile ad hoc networks (MANETs) with the general
group-based two-hop relay algorithm. Under such an algorithm
with packet redundancy limit f and group size g (2HR-(f, g) for
short), each packet is delivered to at most f distinct relay nodes
and can be accepted by its destination if it is a fresh packet
to the destination and also it is among g packets of the group
the destination is currently requesting. A general Markov chain-
based theoretical framework is first developed to characterize the
complicated packet delivery process in the challenging MANET
environment. With the help of the new theoretical framework,
closed-form expressions are further derived for the throughput
capacity of the 2HR-(f, g) algorithm, from which one can easily
recover the available throughput capacity results by proper
settings of the redundancy limit f and group size g.

I. INTRODUCTION

The mobile ad hoc network (MANET), a flexible peer-

to-peer network technique, holds great promise for a lot of

future applications, such as the disaster relief, emergency

response, military communication and pedestrian network, etc.

Since it enables mobile nodes to randomly move around and

freely communicate to each other without any pre-existing

infrastructure support or centralized management, the MANET

is believed to be one of the most important and indispensable

component among the next generation networks [1]–[4]. Due

to the complicated issues of node mobility and wireless

interference, however, the fundamental performance limits,

like the throughput capacity and packet delay, remain unknown

for the challenging MANET environment [5].

So far, a significant amount of works has been done to

characterize the order sense scaling laws of throughput capac-

ity in MANETs. Grossglauser and Tse in [6] showed that by

adopting the basic two-hop relay algorithm, it is possible to

achieve a Θ(1) per node throughput under the i.i.d. model.

Later, Li et al. in [7] proved that with a variant of the

basic two-hop relay the per node throughput capacity is upper

bounded by O(nβ−α−1/2), where the network area is evenly

divided into n2α cells and each cell is further evenly divided

into squares of area n−2β .

More recently, some closed-form expressions have also

been reported in literature for the throughput capacity of

MANETs. Neely and Modiano in [8] showed that if the user

density is fixed, the per node throughput capacity in a cell

partitioned MANET tends to a fixed value as the number of

users scales up. Later, the work was further extended in [9]

to incorporate the minimum time-average power required to

support the per node throughput capacity there. The exact per

node throughput capacity has also been examined in [10], [11]

where a general two-hop relay with limited packet redundancy

and transmission power control was considered.

It is notice that the above works either considered two-

hop relay algorithms with in-order reception [8], [10], [11] or

adopted the out-of-order ones with/without packet redundancy

[6], [9], which actually can be covered as special cases by the

general group-based two-hop relay algorithm with redundancy

[12], [13]. Under such an algorithm with packet redundancy

limit f and group size g (2HR-(f, g) for short), each packet is

delivered to at most f distinct relay nodes and can be accepted

by its destination if it is a fresh packet to the destination and

also it is among g packets of the group the destination is

currently requesting. In this paper, we focus on the per node

throughput capacity performance in the 2HR-(f, g) MANETs.

We first develop a general finite-state absorbing Markov chain

theoretical framework to model the complicated packet de-

livery process in the challenging MANET environment, and

then adopt the blocking matrix technique to derive closed-form

expressions for the per node throughput capacity there. With

our theoretical framework and throughput capacity results, one

can easily recover the available throughput capacity results in

[8], [10], [11] by proper settings of the control parameters

(f, g).
The remainder of this paper is outlined as follow. Section II

introduces the system models, transmission scheduling scheme

and the 2HR-(f, g) algorithm. We develop the Markov chain

theoretical framework in Section III, derive closed-form results

for the per node throughput capacity in Section IV, and finally

conclude the whole paper in Section V.

II. PRELIMINARIES

A. System Models

The considered network is a two-dimensional torus with n
mobile nodes and unit area, which is evenly divided into m×m
equal cells, each cell of side length 1/m as shown in Fig. 1.

Time is slotted and the i.i.d. model [8] is adopted here as

the mobility model, where each node first independently and

randomly selects a destination cell over all m2 cells at the

beginning of each time slot and then stays inside for a whole



Fig. 1. Illustration of the cell-partitioned network and cells in a concurrent-
set with m = 16 and α = 4. The distribution information of all other mobile
nodes in the network is not shown for simplicity.

time slot. We adopt the protocol model introduced in [14] as

the interference model and denote by ∆ the guard factor.

Similar to [10], [13], we assume that only one-hop transmis-

sions are available within each time slot, and each node with

transmission range r can only send data to nodes in the same

cell or its eight adjacent cells (two cells are called adjacent

if they share a common point). Thus, the transmission range

can be accordingly determined as r =
√
8/m. To simplify the

analysis, we assume that the total number of bits transmitted

per slot is fixed and normalized to 1 packet. We further assume

a permutation traffic pattern, in which each node has a locally

generated traffic flow to deliver to its destination, and also

needs to receive another traffic flow originated from some

other node. Thus, there are in total n distinct traffic flows in

the network. Without loss of generality, we focus on a tagged

flow hereafter and denote by S and D the source node and

the destination node, respectively.

B. Transmission Scheduling

In order to schedule as many simultaneous link transmis-

sions as possible, we define here the “concurrent-set” for

transmission scheduling [13].

Concurrent-set: A concurrent-set is a subset of cells in

which any two of them have a vertical and horizontal distance

of some multiple of α cells and all cells there can transmit

simultaneously without interfering with each other.

It is easy to see that with such a concurrent-set definition,

all m2 cells are actually divided into α2 distinct concurrent-

sets. As illustrated in Fig. 1 for the case α = 4, there are

in total 16 concurrent-sets and all shaded cells belong to the

same concurrent-set. In order to guarantee simultaneous link

transmissions in a concurrent-set, the parameter α should be

carefully tuned. As shown in Fig. 1, suppose in some time slot

node S is scheduled to transmit a packet to node V . One can

see that another transmitting node U in some other active cell

is at least (α−2)/m away from V . According to the protocol

interference model [14], the condition that U will not interfere

with the packet reception at V is that (α− 2)/m ≥ (1+∆)r.

Substituting r =
√
8/m, then we have

α = min{⌈(1 + ∆)
√
8 + 2⌉,m} (1)

If we let each concurrent-set become active (i.e., have link

transmissions) alternatively, then each cell will also become

active every α2 time slots. If there are more than one nodes in

an active cell, a transmitting node is randomly selected from

them, and the selected node then follows the following 2HR-

(f, g) algorithm for packet transmission.

C. 2HR-(f, g) Algorithm

The 2HR-(f, g) algorithm was first proposed in [12], and

we include it here for completeness. When operating under

such algorithm, each node maintains n individual queues at its

buffer: one local-queue for storing locally generated packets,

one already-sent-queue for storing packets whose f copies

have already been distributed but their reception status are not

confirmed yet (from the destination node), and n − 2 relay-

queues for storing packets of other n− 2 traffic flows (except

the two ones originated from and destined for itself).

A sequence number-based mechanism is adopted in the

2HR-(f, g) algorithm to avoid network congestion. Specifi-

cally, for the tagged flow, node S divides packets waiting at

its local-queue into consecutive groups, g packets per group,

and labels each packet P with a send group number SG(P )
and sequence number SN(P ) (1 ≤ SN(P ) ≤ g). The

destination node D also maintains a request group number

RG(D) and indicator vector IN(D), where RG(D) denotes

the packet group number that D is currently requesting for

and IN(D) records the reception status of all packets in the

current requesting group, i.e., group RG(D). To simplify the

analysis, each relay is assumed to carry at most one packet

for any particular group. Then we are ready to introduce the

2HR-(f, g) algorithm.

2HR-(f, g) Algorithm: Every time node S wins a trans-

mission opportunity, it operates as follows.

Step 1: (“source-to-destination”) If node D is inside the

one-hop range, after obtaining RG(D) and IN(D) from D,

S transmits directly to D a fresh packet of group RG(D). A

packet is called a fresh packet if it has not been received yet

by its destination; otherwise, it is called a non-fresh packet.

Step 2: Otherwise, S randomly chooses to perform one of

the following operations with equal probability:

• (“source-to-relay”) It randomly selects one node, say R,

from the one-hop neighbors, and checks whether R is a

fresh node. If not, it delivers to R a copy of the head-

of-line packet Ph at its local-queue; otherwise it remains

idle for this time slot. For a tagged packet group, a node

is called a fresh node if it is carrying a fresh packet for

the group; otherwise, it is called a non-fresh node. After

distributing out f copies for Ph, S puts Ph to the end

of the already-sent-queue and moves ahead the remaining

packets at the local-queue.

• (“relay-to-destination”) The node S acts as a relay and

randomly selects a node (say V ) from the one-hop

neighbors. After obtaining the RG(V ) and IN(V ) from

V , S checks whether there exists a fresh packet of

group RG(V ) in its relay-queue specified for V . If so, it

transmits this packet to V and removes all packets with



SG ≤ RG(V ) from its relay-queue for V ; otherwise, it

remains idle for this time slot.

III. MARKOV CHAIN FRAMEWORK

A. Some Basic Probabilities

Lemma 1: For a time slot and the tagged flow, if we use

p1 to denote the probability that S conducts a “source-to-

destination” transmission with node D and use p2 to denote the

probability that S conducts a “source-to-relay” transmission or

“relay-to-destination” transmission with some other node, then

p1 and p2 can be given by

p1 =
1

α2

(

9n−m2

n(n− 1)
−

(

1− 1

m2

)n−1
8n+ 1−m2

n(n− 1)

)

(2)

p2 =
1

α2

(

m2 − 9

n− 1

(

1−
(

1− 1

m2

)n−1)

−
(

1− 9

m2

)n−1)

(3)

Lemma 2: For a time slot and the tagged flow, suppose that

node S is delivering copies for some packet group i, node D
is requesting packets of the group i, and there are currently

t1 fresh nodes and t2 non-fresh nodes for the group i in the

network. If we denote by pr(t1) the probability that D will

receive a fresh packet, denote by pd(t2) the probability that

S will successfully deliver out a new copy to some non-fresh

node, and denote by ps(t1, t2) the probability of both “source-

to-relay” transmission and “relay-to-destination” transmission

in the next time slot, then we have

pr(t1) = p1 +
t1

2(n− 2)
p2 (4)

pd(t2) =
t2

2(n− 2)
p2 (5)

ps(t1, t2) =
t1t2(m

2 − α2)

4m2α4

n−5
∑

k=0

(

n− 5

k

)

h(k)

·
{ n−4−k

∑

t=0

(

n− 4− k

t

)

h(t)
(

1− 18

m2

)n−4−k−t
}

(6)

where

h(x) =
9
(

9
m2

)x+1 − 8
(

8
m2

)x+1

(x+ 1)(x+ 2)
(7)

The derivations of (2), (3), (4), (5) and (6) are omitted here

due to space limit, and please refer to [13] for details.

B. Markov Chain-Based Theoretical Framework

Before proceeding to develop the Markov chain theoretical

framework, we first introduce two service processes, i.e., the

packet dispatching process at the source node S and the packet

receiving process at the destination node D. According to the

2HR-(f, g) algorithm, S delivers out at most f distinct copies

for each packet; D accepts packets according to their group

numbers, i.e., D will accept a packet as long as it is fresh

and also among the packet group D is currently requesting

for. Thus, we can see that under the 2HR-(f, g) algorithm, the

(a) State transition diagram for k = 0

(b) State transition diagram for 1 ≤ k ≤ g − 2

(c) State transition diagram for g − 1 ≤ k ≤ g

Fig. 2. Transition diagram of the Markov chain for the fastest packet
dispatching process at S. For each transient state there, the transition back to
itself is not shown for simplicity.

inter-group packet reception at D is strictly in-group-order,

while the intra-group packet reception at D is totally out-of-

order.

Consider a general packet group of the tagged flow and the

initial network state when D is just starting to request for this

packet group (i.e., the network state when D receives the last

packet of the former group). Due to the network dynamics

of node mobility and traffic arrivals, such initial network state

may vary significantly from group to group. Specifically, if we

denote by (i, j, k) a general network state that S is delivering

the ith (1 ≤ i ≤ f) copy for the jth (1 ≤ j ≤ g) packet of

the group while D has received any k (0 ≤ k ≤ j) of the j
packets, and denote by (∗, ∗, k) the state that S has already

finished copy distribution for the tagged group while D has

only received k (0 ≤ k < g) packets of them, then the set of

initial network states for the tagged group can be determined

as {(i, j, 0)} ∪ {∗, ∗, 0} 1, i ∈ [1, f ], j ∈ [1, g].
According to [10], [11], we can see that in order to derive

the throughput capacity of the general 2HR-(f, g) algorithm,

we need to first characterize the fastest packet dispatching

process at S and the fastest packet receiving process at D.

It is easy to see that the fastest packet dispatching process at

S corresponds to the initial network state (1, 1, 0) (i.e., when

S starts to deliver the first copy for the first packet, D is also

requesting for this group); while the fastest packet receiving

process at D corresponds to the initial network state (∗, ∗, 0)
(i.e., when D starts to request for the group, S has already

finished copy distribution for this group). If we further denote

by A the absorbing state (i.e., the termination of the service

process), the corresponding fastest packet dispatching process

at S and the fastest packet receiving process at D can be

defined by two finite-state absorbing Markov chains shown in

Fig. 2 and Fig. 3, respectively.

1Notice that state (1, 1, 0) also corresponds to the case that when D starts
to request for the tagged packet group, say group SG, S is still delivering
packets for the former group (i.e., group SG− 1).



Fig. 3. Transition diagram of the Markov chain for the fastest packet receiving
process at D. For each transient state there, the transition back to itself is not
shown for simplicity.

For the Markov chain in Fig. 2, Figs. 2a, 2b and 2c

each represents some cases of the full chain. Specifically,

Fig. 2a represents the cases when S finishes copy distribution

for the tagged group, no more than one packet is received

at D; Fig. 2b illustrates the cases that D may receive at

most one more packet by the time S distributes out all

packet copies, given that D has already received k packets

of them, 1 ≤ k ≤ g − 2; Fig. 2c defines the cases that

g − 1 or all g packets of the tagged group are received

at D by the end of packet dispatching process at S. The

transitions of SD, SR, RD and SR+RD in Fig. 2 correspond to

the transmissions of “source-to-destination”, “source-to-relay”,

“relay-to-destination” and both “source-to-relay” and “relay-

to-destination” in the 2HR-(f, g) algorithm, respectively. Since

the Markov chain in Fig. 3 represents the case that when D
starts to request for the tagged packet group S has already

finished copy distribution for the group, there are only SD

and RD transitions among neighboring states there.

One can easily observe from Fig. 2 that in the Markov chain

model there, the total number of transient states β is given by

β =
g

2
(g · f + 3f − 2) (8)

A further careful observation of Fig. 2 indicates that these β
transient states are actually arranged into g + 1 rows, where

the number of transient states Lk in the kth (0 ≤ k ≤ g) row

is determined as

Lk =

{

g · f if k = 0,

(g − k + 1)f − 1 if 1 ≤ k ≤ g.
(9)

For the Markov chain model in Fig. 2, if we use ur and uo to

denote the number of fresh nodes and the number of non-fresh

nodes in the tth (1 ≤ t ≤ Lk) state of the kth (0 ≤ k ≤ g)

row, respectively, then after applying some derivations similar

to that in [13], the ur and uo can be given by

ur =

{

t− 1 if k = 0,

t− f if 1 ≤ k ≤ g.
(10)

uo =

{

n− 1− t if k = 0,

n− 2− t+ k − (k − 1)f if 1 ≤ k ≤ g.
(11)

IV. PER NODE THROUGHPUT CAPACITY ANALYSIS

A. Throughput Capacity

A traffic input rate is called feasible under the 2HR-(f, g)
algorithm if with such input rate the queue length at each node

will not grow to infinity as the time goes to infinity. The per

node throughput capacity is defined as the maximum feasible

input rate at each node. Then we have the following theorem

regarding the per node throughput capacity under the 2HR-

(f, g) algorithm.

Theorem 1: For the considered MANET with i.i.d. mobility

model, if we denote by µ (packets/slot) the per node (flow)

throughput capacity under the general 2HR-(f, g) algorithm,

then the throughput capacity µ can be determined as

µ = min

{

g

E{XS}
,

g

E{XD}

}

(12)

where E{XS} denotes the mean time it takes the Markov

chain in Fig. 2 to become absorbed given that the chain starts

from the state (1, 1, 0), and E{XD} denotes the mean time it

takes the Markov chain in Fig. 3 to get absorbed given that

the chain starts from the state (∗, ∗, 0).
Proof: Without loss of generality, we focus on the tagged

flow. According to [10], [11], we can see that the per node

throughput capacity µ under the 2HR-(f, g) algorithm is

actually determined by the minimum one of two service rates

for a general packet group, i.e., the fastest service rate of

packet dispatching process at the source node S and the fastest

service rate of packet receiving process at the destination node

D. From the Markov chain framework in Section III, we

can see that E{XS} and E{XD} actually correspond to the

shortest service time of the dispatching process at S and that

of the receiving process at D, respectively. Thus, the per node

throughput capacity can be determined as (12), and then we

finish the proof for Theorem 1.

It is easy to see that for the state (∗, ∗, k) (k ∈ [0, g−1]) of

the Markov chain in Fig. 3, there are (g−k)f fresh nodes and

thus the probability of RD transition there is pr((g − k)f)−
p1. According to the Markov chain theory [15], the expected

service time E{XD} can be given by

E{XD} =

g−1
∑

k=0

1

p1 +
(g−k)f
2(n−2)p2

(13)

Now we proceed to derive the expected service time

E{XS}. As illustrated in Fig. 2, all β transient states there

are arranged into g + 1 rows. We number these transient

states sequentially as 1, 2, . . . , β in a left-to-right and top-

to-down way. If we denote by qij the transition probability

from transient state i to transient state j, i, j ∈ [1, β], then

we can get a matrix Q = (qij)β×β defining the transition

probabilities among all transient states there. According to the

Markov chain theory [15], we can see that the fundamental

matrix N of the Markov chain in Fig. 2 is determined as

N = (I−Q)−1 (14)

where I is the unit matrix and N = (aij)β×β . Since the ij-

entry of matrix N, i.e., aij , represents the expected number

of times in state j given that the chain starts from state i, the

expected service time E{XS} can be given by

E{XS} = b ·N · c (15)

where b = (1, 0, . . . , 0) and c = (1, 1, . . . , 1)T .

Combining the above results in (12), (13), (14) and (15),

we can see that in order to derive the throughput capacity µ,

the only remaining issue is to derive the matrices Q and N,

as discussed in the following section.



B. Derivations of Matrices Q and N

Consider the Markov chain in Fig. 2. It is noticed that for

the g + 1 rows of transient states there, the transitions only

happen among transient states of the same row or neighboring

rows. Thus, the matrix Q can be defined in a blocking way

as follows

Q =



























Q0 Q
′

0

Q1 Q
′

1

. . .
. . .

Qk Q
′

k

. . .
. . .

Qg−1 Q
′

g−1

Qg



























(16)

where sub-matrix Qk corresponds to the transition probabil-

ities among the kth row of transient states, and sub-matrix

Q
′

k corresponds to the transition probabilities from transient

states of the kth row to that of the (k + 1)th row. All the

other sub-matrices in (16) are zero-matrices and omitted for

simplicity.

Derivations of Qk: the non-zero ij-entry Qk(i, j) (k ∈
[0, g], i, j ∈ [1, Lk]) of sub-matrix Qk is determined as

Qk(i, i+ 1) = pd(uo)− ps(ur, uo) if 1 ≤ i < Lk (17)

Qk(i, i) = 1− pd(uo)− pr(ur) + ps(ur, uo) (18)

Derivations of Q
′

k: the non-zero ij-entry Q
′

k(i, j) (k ∈
[0, g − 1], i ∈ [1, Lk], j ∈ [1, Lk+1]) of sub-matrix Q

′

k can be

determined as

Q
′

k(i, i−d(k)) = pr(ur)−ps(ur, uo)−p1 if d(k)+1 ≤ i ≤ Lk

(19)

Q
′

k(i, i−d(k)+1) = ps(ur, uo) if d(k)+1 ≤ i < Lk (20)

where

d(k) =

{

1 if k = 0,

f if 1 ≤ k ≤ g − 1.
(21)

Q
′

k(i, e(i) ·f) = p1 if 0 ≤ k < g−1, 1 ≤ i ≤ Lk−f (22)

where

e(i) =











⌈ i
f ⌉ if k = 0,

1 if 1 ≤ k < g − 1, 1 ≤ i ≤ f − 1,

⌊ i
f ⌋ if 1 ≤ k < g − 1, f ≤ i ≤ Lk − f.

(23)

From the above derivations for sub-matrices {Qk} and

{Q′

k}, the matrix Q in (16) can then be accordingly derived.

Since the fundamental matrix N = (I−Q)−1, we can derive

N based on Q. The derivation for matrix N is omitted here

due to space limit and please refer to [13] for details.

V. CONCLUSION

In this paper, we have investigated the per node throughput

capacity in MANETs with the general 2HR-(f, g) algorithm,

which covers all the available two-hop relay algorithms as

special cases. A finite-state absorbing Markov chain-based

theoretical framework was developed to model the fastest

packet dispatching process at the source node and also the

fastest packet receiving process at the destination node. Based

on the new theoretical framework, closed-form expressions

were further derived for the throughput capacity of the 2HR-

(f, g) algorithm by adopting the blocking matrix technique.

It is expected that our throughput capacity results can help

network designers to select appropriate control parameters f
and g of the 2HR-(f, g) algorithm so as to meet a specific per

node throughput requirement.
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