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Abstract—A lot of works have been dedicated towards un-
derstanding the relationship between throughput capacity and
packet delay in mobile ad hoc networks (MANETs). However,
nearly all these works either assume a localized transmission
range, or report the relationship between throughput capacity
and packet delay only in terms of the number of users. It remains
largely unknown for such a fundamental relationship in terms
of other network parameters, like the packet redundancy and
node transmission range. As a first step towards this end, in this
paper we derive closed-from expressions for throughput capacity
and delivery delay under a general setting of node transmission
range and also a generalized two-hop relay with limited packet
redundancy. Extensive numerical results are further provided to
explore how throughput capacity varies with delivery delay in
terms of various network parameters, such as the number of
users, the packet redundancy limit, and the node transmission
range, etc.

I. INTRODUCTION
Mobile ad hoc network (MANET) is a fully self-

autonomous system where mobile nodes freely communicate
with each other via wireless channels [1], [2]. Since it can
be rapidly deployed, extended and reconfigured at very low
cost, the MANET is believed to be one of the most important
components among next generation networks. Therefore, it is
a critical issue to thoroughly understand the performances of
such networks [3].
So far, a lot of works have been done to explore the

relationship between throughput capacity and packet delay
in MANETs under various mobility models. Lin et al. [4]
studied the independent and identically distributed (i.i.d.)
model, and showed that the capacity λ and delay D there
have a relationship of λ = O( 3

√
D/n log n), where n is the

number of users. Later, Neely et al. [5] also studied the i.i.d.
model and showed that D/λ ≥ O(n) by allowing multiple
copies for each packet. Gamal et al. [6] showed that under the
random walk mobility, D = Θ(nλ) for λ = O(1/

√
n log n),

and D = Θ(n log n) for λ = Ω(1/
√
n log n). Sharma et al.

[7] showed that when nodes move according to the random
waypoint model on a unit sphere, D/λ ≥ Θ(nTp) where
Tp is the packet duration. More recently, Ying et al. [8] has
examined the optimal delay-throughput trade-offs under both
fast and slow mobility time-scales.
However, nearly all these works either assume a localized

transmission range (i.e., r = Θ(1/
√
n)), or consider the basic

two-hop relay routing (or its variants) [9], or report the order

sense scaling laws and thus the relationship between through-
put capacity and packet delay only in terms of the number
of users. It remains largely unknown that how throughput
capacity varies with packet delay in other network parameters,
like the packet redundancy and node transmission range.
As a first step towards this end, in this paper, we analytically

study the relationship between throughput capacity and deliv-
ery delay in mobile ad hoc networks under a general setting of
node transmission range and also a generalized two-hop relay
routing with f -cast (2HR-f ). Under such a routing scheme,
each packet is delivered to at most f distinct relay nodes and
should be received in order at its destination.
The main contributions of this paper are summarized as

follows:
• After assuming nodes move according to the i.i.d. mo-
bility model and each contends for wireless channel
according to a transmission-group based medium access
control (MAC) scheme, we derive closed-form expres-
sions for throughput capacity and delivery delay in such
a MANET.

• Extensive numerical results are provided to explore the
relationship between throughput capacity and delivery
delay in terms of various network parameters, such as
the number of users, the packet redundancy limit, and
the node transmission range, etc.

The remainder of this paper is outlined as follows. In Sec-
tion II, we introduce the system assumptions, a transmission-
group based MAC scheme and the 2HR-f routing scheme. In
Section III, we derive closed-form expressions for the through-
put capacity and delivery delay. We explore the relationship
between throughput capacity and delivery delay in Section IV,
and finally conclude the paper in Section V.

II. PRELIMINARIES

A. System Models
Similar to [10], the network considered in this paper is

assumed to be a unit torus which is divided into m×m equal
cells. Time is slotted (and each slot is of fixed length) and
during any time slot a successful transmission conveys a fixed
amount of data (normalized to a “packet”, henceforth). We
consider a general setting of transmission range, as shown
in Fig. 1a, each node can transmit to a set of cells which



(a) Cell partitioned network. (b) Illustration of transmission-
groups with α = 3.

Fig. 1. Network cell partition and transmission-group.

have horizontal and vertical distances of no more than υ − 1
(1 ≤ υ ≤ �m+1

2 �) cells away from its current cell [11], [12].
We assume that there are n mobile nodes randomly and

independently moving among these m2 cells according to the
i.i.d. mobility model [5]. Each node has a locally generated
traffic flow to deliver to some node, and also needs to receive
another traffic flow originated from some other node [13].
Under such a permutation traffic pattern, there are in total
n flows inside the network.
The protocol model introduced in [14] is adopted here as

interference model. Suppose node i is transmitting to node j.
According to the interference model, the transmission from
node i to node j is successful if and only if that, for any other
node k that is transmitting simultaneously with node i, we
have

|X(k)−X(j)| ≥ (1 + Δ)|X(i)−X(j)|
where Δ is a fixed positive constant representing the guard
zone in the protocol model [14], and X(·) denotes the physical
node location.

B. A Transmission-group Based MAC Scheme
Since under the general setting of transmission range, a node

in some cell can transmit to other cells which have relative
horizontal and vertical distances of no more than υ − 1 cells.
According to the interference model, only cells that are suffi-
ciently far away (depending on Δ) could support simultaneous
transmissions without interfering with each other.
In order to support as many simultaneous transmissions

as possible, we adopt here a transmission-group based
MAC scheme [15], [16]. First we give the definition of a
transmission-group.
transmission-group: a transmission-group is defined as

a subset of cells, where any two of them have a vertical
and horizontal distance of some multiple of α cells away
and all the cells there could transmit simultaneously without
interfering with each other. As shown in Fig. 1b with α = 3,
there are in total 9 transmission-groups.
Given the guard factor Δ, the parameter α should be set ac-

cordingly to ensure the successful simultaneous transmissions
among cells of a transmission-group. After applying some

derivations similar to that in [12], the parameter α can be
determined as follows

α = min{υ + �
√

2(Δ + 1)2υ2 − (υ − 1)2�,m} (1)

Notice that there are only α2 transmission-groups, and
each cell belongs to an individual transmission-group. If
transmission-groups become active (i.e., get transmission op-
portunity) alternatively, then each cell become active in every
α2 time slots. If there are more than one nodes inside an active
cell, a transmitting node is selected randomly from them in a
distributed way according to the method introduced in [16].
The selected node then follows the 2HR-f routing scheme for
packet transmission.

C. The 2HR-f Routing Scheme

The generalized two-hop relay with f -cast (2HR-f ) is
adopted here for packet transmission [5], [16], [17], 1 ≤ f ≤
n − 2. Under such a routing scheme, each destination node
receives packets according to their sequence numbers, and
each packet at its source node may be delivered to at most
f distinct relay nodes. Therefore, together with the original
one at its source source, each packet may have at most f + 1
redundant copies.
Without loss of generality, henceforth we focus on a tagged

traffic flow, and use S and D to denote its source node
and destination node, respectively. For each locally generated
packet, say P , node S labels P with a unique sequence
number SN(P ), and node D also maintains a request number
RN(D) to denote the sequence number of the packet that
node D is currently requesting for. In other words, all packets
with sequence numbers less than RN(D) have already been
received by node D.
The packet transmission is scheduled as follows: every time

node S is selected as the transmitter in an active cell, it
conducts the “source-to-destination” transmission if node D
is inside the one-hop transmission range; otherwise, it first
randomly selects a node from all its one-hop neighbors as
the receiver, then conducts the “source-to-relay” transmission
or “relay-to-destination” transmission with equal probability
[16]. If there is no other node in the one-hop neighborhood,
it remains idle for the current time slot.

III. THROUGHPUT CAPACITY AND EXPECTED DELIVERY
DELAY

A. Some Useful Lemmas

Before deriving the per node throughput capacity and deliv-
ery delay in a 2HR-f MANET, we first introduce the following
basic lemmas which will be used quite often in the analysis
of subsequent sections.
Lemma 1: Consider the source node S of the tagged flow

in a general time slot. If we use p1 to denote the probability
that it conducts a source-to-destination transmission and use
p2 to denote the probability that it conducts a source-to-relay



or relay-to-destination transmission, then we have

p1 =
1

α2

{ t− m2

n

n− 1
−

(m2 − 1

m2

)n−1 (t− 1)n+ 1−m2

n(n− 1)

}
(2)

p2 =
1

α2

{m2 − t

n− 1

(
1−

(m2 − 1

m2

)n−1)
−

(m2 − t

m2

)n−1}
(3)

where t = (2υ − 1)2.
Lemma 2: Consider the tagged traffic flow in a general time

slot, suppose the source node S is delivering copies for some
packet P , the destination node D is also requesting for P , i.e.,
SN(P ) = RN(D), and there are in total j (1 ≤ j ≤ f + 1)
copies of P in the network (i.e., node S has already delivered
out j − 1 copies of P to j − 1 distinct relay nodes). If we
denote by Pr(j), Pd(j) and Ps(j) the probability that node D
will receive P , the probability that node S will successfully
deliver out a copy of P to some new relay (if j ≤ f ) and
the probability of simultaneous source-to-relay and relay-to-
destination transmissions in the next time slot, respectively,
then we have

Pr(j) = p1 +
j − 1

2(n− 2)
p2 (4)

Pd(j) =
n− j − 1

2(n− 2)
p2 (5)

Ps(j) =
(j − 1)(n− j − 1)(m2 − α2)

4m2α4

n−5∑
k=0

(
n− 5

k

)
h(k)

·
{ n−4−k∑

t=0

(
n− 4− k

t

)
h(t)

(m2 − 2(2υ − 1)2

m2

)n−4−k−t
}
(6)

where

h(x) =
(2υ − 1)2

( (2υ−1)2

m2

)x+1 − (4υ2 − 4υ)
(
4υ2

−4υ
m2

)x+1

(x+ 1)(x+ 2)
(7)

The proofs of Lemmas 1 and 2 are omitted here due to
space limit, and please kindly refer to [18] for details.

B. Derivations for the Throughput Capacity and Expected
Delivery Delay
As shown in [12], the network system under the 2HR-f

routing can be characterized by an automatic feedback control
system, where the packet dispatching process at source node S
and the packet receiving process at destination node D can be
defined by two distinct absorbing Markov chains, respectively.
If we denote by μ the per node (flow) throughput capacity,
i.e., under any input rate less than μ the queue length at each
node will never increase to infinity as the time goes to infinity.
After applying derivations similar to that in [12], we have the
following theorem for the throughput capacity μ.
Theorem 1: Consider a cell partitioned 2HR-f MANET

(1 ≤ f ≤ n − 2), where nodes move according to the i.i.d.
mobility model, and each contends for the wireless channel

Fig. 2. Finite state absorbing Markov chain for a general packet P , where
k (1 ≤ k ≤ f + 1) denotes a state that there are in total k copies of packet
P in the network (including the original one at the source node S). For each
transient state, the transition back to itself is not shown for simplicity.

according to the transmission-group based MAC scheme. The
per node throughput capacity μ can be given by

μ = min

{
p1 + p2/2

1 +
∑f−1

j=1

∏j

t=1
Pd(t)

p1+Pd(t+1)

, Pr(f + 1)

}
(8)

The proof of Theorem 1 is omitted here due to space limit
and please kindly refer to [12] for details.
Similar to [6], [19]–[21], in this paper we focus on the

network delivery delay which are caused by nodes’ mobility
and do not include the part of queuing delay at the source node.
We first introduce the following definition about the delivery
delay.
Definition 1: For a general packet P at the source node

S, the delivery delay is defined as the time elapsed between
the time slot when node S starts to deliver out copies for
the packet P and the time slot when the destination node D
receives P given that SN(P ) = RN(D).
For a general packet P , if we use A to denote the absorbing

state (i.e., the state that node D has received P ), the delivery
process of packet P under the 2HR-f routing can be defined
by a finite state absorbing Markov chain shown in Fig. 2. If we
denote by Td the delivery delay of packet P , then according
to the theory of Markov chain [22], Td can be regarded as the
time the Markov chain in Fig. 2 takes to become absorbed
given that the chain starts from state 1. Using derivations
similar to that in [23], we have the following theorem.
Theorem 2: For a 2HR-f MANET with the transmission-

group based MAC scheme, the expected delivery delay E{Td}
can be determined as

E{Td} =
1 +

∑f−1
j=1 φ(j) + Pd(f)−Ps(f)

Pr(f+1) φ(f − 1)

p1 + p2/2
(9)

where

φ(j) =

j∏
t=1

Pd(t)− Ps(t)

p1 + p2/2− Ps(t+ 1)

The proof of Theorem 2 is omitted here due to space limit,
and please kindly refer to [18] for details.

IV. NUMERICAL RESULTS
In this section, we analytically explore how throughput

capacity μ varies with delivery delay E{Td} in terms of the
number of users n, the packet redundancy limit f , and the
node transmission range υ. A fixed network cell partition with
m = 24 was adopted in this paper (the other cell partitions
can also be easily obtained by our theoretical results). Similar



Fig. 3. (E{Td}, μ) vs. n for the cases of (υ = 1, f = 12) and (υ = 3, f =
2) with 400 ≤ n ≤ 1000.

Fig. 4. (E{Td}, μ) vs. f for the cases of (υ = 2, n = 700) and (υ =
3, n = 500) with 1 ≤ f ≤ 32.

to the settings adopted in [24], [25], the guard factor Δ here
was fixed as Δ = 1.

A. Under Fixed υ and f

We first examine how the throughput capacity μ varies with
the delivery delay E{Td} in terms of the number of users n.
Two cases of (υ = 1, f = 12) and (υ = 3, f = 2) with
400 ≤ n ≤ 1000 are presented and the corresponding results
are summarized in Fig. 3. We can see that for both the two
cases there, as n varies from 400 to 1000, μ decreases almost
linearly with E{Td}. It is also noticed that μ (resp. E{Td})
monotonically decreases (resp. increases) with n. This can
be interpreted as follows, for a fixed network region, as n
and thus the node density n/m2 gradually increases up, the
network becomes crowded which leads to severe contention
and decrease of the network performances.

B. Under Fixed υ and n

Fig. 4 shows the relationship between the throughput capac-
ity μ and delivery delay E{Td} under fixed settings of υ and
n. It’s interesting to notice that the behaviors of μ with E{Td}
are divided into two parts: as E{Td} monotonically decreases

(a) (E{Td}, μ) vs. υ for the cases of (f = 4, n = 800) and
(f = 8, n = 600) with 1 ≤ υ ≤ 12.

(b) (E{Td}, μ) vs. υ for the cases of (f = 18, n = 800) and
(f = 24, n = 600) with 1 ≤ υ ≤ 12.

Fig. 5. Illustration of the relationship between (E{Td}, μ) and the node
transmission range υ.

(with f increasing from 1 to 32), μ first gradually increases
until some point, then diminishes quickly. The monotonically
decreasing behavior of E{Td} can be attributed to the fol-
lowing reason that as f increases up, more relay nodes will
help carrying copies for a packet and thus shorten the packet
delivery delay. However, deliberate researches are required to
explain the throughput behavior in the second part where both
E{Td} and μ are decreasing.
A further careful observation of Fig. 4 indicates that beyond

some threshold value (f = 22 in the case (υ = 2, n = 700)
and f = 15 in the case (υ = 3, n = 500)), μ is extremely
sensitive to the variations of E{Td}, and there exists some
limiting point of (E{Td}, μ) with f . The limiting behavior
can be explained as follows: for a fixed network setting of
n and υ, the network performance can not be improved any
more if the maximum number of relay nodes, i.e., f , increases
beyond some value.

C. Under Fixed f and n

We proceed to evaluate the relationship between throughput
capacity μ and delivery delay E{Td} under fixed f and n. With



m = 24, υ can be determined as 1 ≤ υ ≤ 12. We consider
two network scenarios n = 800, 600 with two settings of f
for each scenario, i.e., (f = 4, n = 800), (f = 8, n = 600),
(f = 18, n = 800) and (f = 24, n = 600), and summarize
the corresponding results in Figs. 5a and 5b, respectively.
Fig. 5a shows clearly that under both the two settings of

f and n there, as υ varies from 1 to 12, the curve of case
(f = 4, n = 800) almost coincides with that of case (f =
8, n = 600), and the relationships between μ and E{Td} there
can be well approximated with the curve μ ·E{Td} = 1. Such
nice matchings with the curve μ · E{Td} = 1 can also be
observed from Fig. 5b as υ increases beyond some value (υ =
3 for both cases there). It could be attributed to the following
reason that, as υ increases up, the MANET is becoming one-
hop network where the node transmission range can cover the
whole network region and thus μ = 1/E{Td}. Our results
indicate that such property may also hold in 2HR-f MANETs
even with relatively small transmission range (i.e., υ).
A further careful comparison between Figs. 5a and 5b

indicates that the impacts of node transmission range υ on μ
and E{Td} are two folds. One is advantageous, i.e., a bigger
transmission range could lead to a higher probability to meet
the destination node or some relay node and thus a faster
message delivery speed. The other is disadvantageous, i.e., a
bigger transmission range would result in a wide interference
range (i.e., a bigger α) which limits the spatial reuse of whole
network, and thus reduces the number of simultaneous trans-
missions. The performance trade-off between these two folds
may be negligible if f is relatively small compared with the
network size n (as shown in Fig. 5a); otherwise, (E{Td}, μ)
may have different varying tendencies as υ increases. For
example, for the case of (f = 24, n = 600) in Fig. 5b, μ
(resp. E{Td}) first decreases (resp. increases) until υ = 3,
then increases (resp. decreases) as υ ≥ 3.

V. CONCLUSION
In this paper we have investigated the relationship between

throughput capacity μ and delivery delay E{Td} in MANETs.
In particular, we derived closed-form expressions for μ and
E{Td} in a 2HR-f MANET with generalized node transmis-
sion range. Extensive numerical results were provided to show
how μ varies with E{Td} in terms of the number of users n,
the packet redundancy limit f and the node transmission range
υ. Our results indicate that under fixed υ and f , μ varies
almost linearly with E{Td}; while under fixed υ and n, as
E{Td} decreases, μ first increases until some value and then
decreases. It’s interesting to find that under fixed f and n, the
relationship between μ and E{Td} can be well approximated
with μ · E{Td} = 1, similar to that in one-hop networks.
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