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Abstract—In Rayleigh block fading channels which represent
fast-varying channels, long-term rate adaptation is required
instead of instantaneous rate adaptation because the channel
information fed back may be outdated. We maximize the long-
term average transmission rate (LATR) in a two-hop relay
network which adopts Chase combining (CC) type Hybrid
Automatic-Repeat-reQuest (HARQ). The round transmission rate,
i.e. the transmission rate of each HARQ round in each hop, is
optimally selected based on the channel statistics of two hops.
Two constraints are considered: the outage probability and the
maximum number of HARQ rounds, L. In an infinite L case,
we show that the optimal round transmission rate of one hop
is determined only by the channel statistics of that hop, and
can be expressed as a Lambert W function. In a finite L case,
we propose a numerical search algorithm to find the optimal
round transmission rate. If HARQ is not adopted, the LATR
performance becomes very poor. As L increases in the two-hop
relay with CC-based HARQ, the LATR performance becomes
close to the LATR performance in the infinite L case. We also
show the benefits of the proposed rate selection method compared
to a non-optimal rate selection method in terms of the LATR.

Index Terms—HARQ, Multi-hop relay, rate adaptation,
Rayleigh block-fading.

I. INTRODUCTION

Hybrid Automatic-Repeat-reQuest (HARQ) schemes have
been widely used to achieve temporal diversity and power
gains through retransmissions at a transmitter and combining
of two multiple received signals at a receiver when earlier
transmissions were not successfully decoded [1]–[3]. The
HARQ schemes provide robustness against channel fluctua-
tions for reliable communication [4], [5]. When HARQ is
operated in a slowly-varying channel, the throughput can be
improved by adapting the data rate to the quasi-static channel
state [6], [7]. In a fast-varying channel, however, since it is
hard for the transmitter to obtain the up-todate instantaneous
channel state information, it is rather difficult to use the in-
stantaneous rate adaptation. Instead, long-term rate adaptation
can be achieved by using long-term channel statistics. Wu
and Jindal [5] proposed a rate adaptation scheme in order
to maximize the average transmission rate while satisfying a
target outage probability for a single-hop HARQ transmission
in Rayleigh block-fading channels. In this paper, extending
this rate adaptation scheme, we investigate the optimal rate
selection of a two-hop relay adopting a CC-based HARQ
scheme in Rayleigh block-fading channels.

A multi-hop relay network generally improves throughput
and reliability in wireless networks by taking advantages of
coverage extension [8]. Zhao and Valenti [9] presented a
practical relay network adopting a generalized HARQ scheme1

and analyzed the throughput assuming a fixed (not adapted)
data rate in Rayleigh block-fading channels. Several recent
studies have dealt with cooperative relay protocols exploiting
HARQ in a three-node relay network [10]–[13]. In cooperative
relay protocols, the signal from the source node reaches the
destination so that the destination node obtains a diversity
gain exploiting two communication paths from the source and
relay nodes. In many practical relay systems, a direct link
between the source and destination is not considered due to
a complicated control mechanism. Recent standards also have
considered multi-hop relay networks [14], [15].

In this paper, we optimize the HARQ operation in a two-hop
relay network. We consider two constraints: 1) the maximum
number of HARQ rounds, in other words, the maximum
number of retransmissions including the first transmission and
2) the information theoretic outage probability. The packet
transmission failure probability that a packet is not success-
fully decoded at the destination even after the maximum
number of HARQ rounds, should be lower than a given
constrained outage probability. In addition, we let the utility
function be the long-term average transmission rate (LATR)
which is defined as the average number of information bits
attempted to be transmitted per channel use. We consider a
Chase combining (CC)-type HARQ scheme [1] which simply
combines the retransmitted signal and the previously transmit-
ted signals for the same packet, following the maximum ratio
combining (MRC) rule at the receiver. The LATR performance
depends on the round transmission rate2 in relay networks.
In a two-hop relay network, the optimal round transmission
rates for those two hops may be different since the two
hops have different statistics of channel gains. Therefore, we
need to optimize the round transmission rate for each hop.
That optimization is targeted at maximizing LATR and it is

1In the generalized HARQ scheme, the retransmitted packets do not need
to come from the original source but could be sent by relays that overhear
the transmission.

2The round transmission rate is the transmission rate of the each HARQ
round and it is constant for every HARQ round in a single hop if CC-type
HARQ scheme is adopted.



constrained by maintaining both a given maximum number
of HARQ rounds and a given outage probability. We first
obtain the optimal round transmission rates in a two-hop relay
without HARQ schemes and then we consider the optimization
problem for a two-hop relay with HARQ which is also either
constrained by a delay limit or not. The delay constraint affects
the maximum number of HARQ rounds. In the case without a
delay constraint, the optimal round transmission rates can be
expressed as a well-known Lambert W function. We do not
require any numerical search in this case. Moreover, we show
that the round transmission rate in one hop is independent of
the channel statistics in another hop. Several schemes have
been proposed to find the optimal modulation and coding
scheme (MCS) levels in two-hop relay networks [16], [17].
However, we consider both the information-theoretic outage
probability and long-term average transmission rate so that our
results provide a theoretical performance bound in Rayleigh-
block fading channel. In summary, the main contribution
of this paper is to optimize the round transmission rate of
each hop in order to maximize the LATR of a two-hop
relay network with CC-type HARQ in Rayleigh block-fading
channels.

The rest of this paper is organized as follows: In Section
II, we describe a system model in a two-hop relay network.
In Section III, we analyze both the outage probabilities and
LATRs of the two-hop relay with/without HARQ. Moreover,
we formulate optimization problems and propose how to
derive the optimal round transmission rates. In Section IV, we
compare the LATR performance of the two-hop relay schemes.
Finally, we present conclusive remarks in Section V.

II. SYSTEM MODEL

We consider a two-hop relay network with three nodes: a
source node (S), a relay node (R), and a destination node (D)
where the relay forwards a packet transmitted by the source
to the destination. We assume that there is no direct link
between the source and the destination. We assume a block-
fading channel where the channel gain is constant during one
transmission block, but the channel gains of different blocks
are independent and identically distributed (i.i.d.). Let hAB
denote the channel coefficient between nodes A and B. It
is modeled as an independent, zero-mean complex Gaussian
random variable with variance σ2

AB. Let PA denote the transmit
power of node A. We assume that each packet has b informa-
tion bits and T1 and T2 symbols are consumed for transmitting
the packet in the SR-link and the RD-link, respectively. Then,
the transmission rate is R1 , b

T1
and R2 , b

T2
(bits/symbol

or bps/Hz) for the SR-link and the RD-link, respectively. For
HARQ schemes, the transmission rate of a packet depends on
the number of HARQ rounds used for the packet transmission.
For a single link, we let Ni denote the number of HARQ
rounds used for the i-th packet. The average transmission rate
over M packets becomes Mb

T
∑M

i=1 Ni
= R

1
M

∑M
i=1 Ni

, where R

becomes the round transmission rate. If M goes to infinity,
we obtain the LATR as R

E[N ] (bps/Hz).
We analyze and compare the following three two-hop relay

schemes: 1) a two-hop relay scheme which does not adopt
HARQ; 2) a two-hop relay scheme which uses HARQ without
a delay constraint; and 3) a two-hop relay scheme which

adopts HARQ with a delay constraint. All the two-hop relay
schemes consist of two phases for transmission of a packet. In
the first phase, the source transmits a packet to a relay. If the
relay successfully decodes the packet, then the second phase
starts. In the second phase, the relay transmits the packet to
the destination.

III. SYSTEM ANALYSIS

A. Two-hop relay without HARQ

For a sufficiently long packet length, the mutual informa-
tion of the link from node A to node B becomes IAB =

log2

(
1 +

∣∣hl
AB

∣∣2 PA

N0

)
for input with normal distribution and

the outage probability for a given R is given by P out
AB (R) =

Pr [IAB < R] = Pr
[∣∣hl

AB

∣∣2 PA

N0
<
(
2R − 1

)]
. Since X =∣∣hl

AB

∣∣2 follows an exponential distribution, P out
AB (R) is ex-

pressed as the cumulative distribution function (CDF) of
X , 1 − exp(−2R−1

ρAB
), where ρAB is equal to PAσ2

AB
N0

. With
HARQ, the packet is transmitted only once in the SR-link
and the transmission in the RD-link is only possible when
the transmission in the SR-link is successful. Therefore, the
outage probability from the source to the destination is given
by

P out
SD (R1, R2) = Pr[ISR < R1] (1)

+ (1− Pr[ISR < R1]) Pr[IRD < R2]

= 1− exp

(
−2R1 − 1

ρSR

)
exp

(
−2R2 − 1

ρRD

)
.

(2)

For a successful packet transmission, at least two transmission
rounds are required. In addition, the LATR of the two-hop
relay without HARQ is given by

C(R1, R2) =
b

T1 + T2(1− P out
SR (R1))

(3a)

=
1

1/R1 + exp
(
− 2R1−1

ρSR

)
/R2

, (3b)

An optimization problem to maximize the LATR while guar-
anteeing a given outage probability constraint, ϵ, is given by.

max
R1,R2

C(R1, R2) =
1

1/R1 + exp
(
−2R1−1

ρSR

)
/R2

, (4a)

s.t. P out
SD (R1, R2)

= 1− exp

(
−2R1 − 1

ρSR

)
exp

(
−2R2 − 1

ρRD

)
≤ ϵ, (4b)

R1, R2 ≥ 0. (4c)

Both P out
SD (R1, R2) and C(R1, R2) are an increasing function

of R1 and R2, i.e. P out
SD (R1, R2) < P out

SD (R1 +∆1, R2 +∆1)
and C(R1, R2) < C(R1 +∆1, R2 +∆2) for any ∆1,∆2 > 0.
Optimal solutions are always on the boundary of the constraint
(4b) and we prove this as follows:
Proof: Let A = {R1, R2 ≥ 0 : P out

SD (R1, R2) < ϵ}. For
∀R1, R2 ∈ A, there exist ∆1 > 0 and ∆2 > 0 which satisfy
P out
SD (R1+∆1, R2+∆2) = ϵ. Since C(R1, R2) is an increasing



function, C(R1, R2) < C(R1 + ∆1, R2 + ∆2). Therefore, all
R1 and R2 which belong to A can not be optimal solutions �.

By changing inequality (4b) into an equation: 1 −
exp

(
−2R1−1

ρSR

)
exp

(
−2R2−1

ρRD

)
= ϵ, we rewrite this equation

as a function R1(R2): R1 = log2[1 + ρSR
ρRD

− ρSR ln(1 −
ϵ) − ρSR

ρRD
2R2 ]. The optimization problem can be modified as

follows:

min
R2

D(R2) =
1

log2

(
1 + ρSR

ρRD
− ρ1 ln(1− ϵ)− ρ1

ρRD
2R2

)
+ exp

(
2R2 − 1

ρRD
+ ln(1− ϵ)

)
/R2, (5a)

s.t. 0 ≤ R2 ≤ log2 (1− ρRD ln(1− ϵ)) , (5b)

where D(R2) is a convex function in the range of 0 ≤ R2 ≤
log2 (1− ρRD ln(1− ϵ)). See Appendix A. Therefore, we can
find the optimal value of R2, R∗

2, by using a golden section
method [18].

B. Two-hop relay with HARQ

We first discuss the outage performance of a single link
between node A and node B. If a Chase combining scheme is
applied for a sufficiently long packet, the mutual information
from node A and B after the kth HARQ round becomes
expressed as

IAB,k = log2

(
1 +

k∑
l=1

∣∣hl
AB

∣∣2 PA

N0

)
, (6)

where N0 denotes the one-sided noise spectral density. The
outage probability after the kth HARQ round is given by

P out
AB,k(R)=Pr [IAB,k < R]=Pr

[
k∑

l=1

∣∣hl
AB

∣∣2PA

N0
<
(
2R − 1

)]
.

Let Zl =
∣∣hl

AB

∣∣2 PA

N0
. Zl follows an exponential distribution

with rate N0

σ2
ABPA

because hAB ∼ C(0, σ2
AB). We let X =

k∑
l=1

Zl

which is an Erlang-distributed random variable (RV) with
shape k and rate λ = N0

σ2
ABPA

, whose CDF is given by

FX(x, k, λ) = 1−
k−1∑
n=0

e−λx(λx)n/n! (7)

=
∞∑

n=0

e−λx(λx)n/n!−
k−1∑
n=0

e−λx(λx)n/n!

=

∞∑
n=k

e−λx(λx)n/n! (8)

Therefore, P out
AB,k(R) = FX(2R−1, k, N0

σ2
ABPA

). In addition, the
probability that a packet is successfully decoded after the kth
HARQ round is written as

P suc
AB,k(R) = P out

AB,k−1(R)− P out
AB,k(R). (9)

In HARQ schemes, the maximum number of HARQ rounds
can be denoted by L. The expected number of HARQ rounds

per packet for given R and L is expressed as

E[N |R] =
L∑

k=1

k · P suc.
AB,k(R) + L · P out

AB,L(R)

=
L−1∑
k=0

P out
AB,k(R), (10)

We now consider a two-hop relay case. The outage proba-
bility of the two-hop relay with HARQ after the L-th HARQ
round is given by

P out
SD,L(R1, R2) =

L−1∑
r=1

P suc
SR,r(R1)P

out
RD,(L−r)(R2)

+P out
SR,(L−1)(R1). (11)

The average transmission rate over M packets becomes
Mb

T1

∑M
i=1 N (SR)

i +T2

∑M
i=1 N (RD)

i

, where N (SR)
i and N (RD)

i denote the
number of HARQ rounds used for the i-th packet in the SR-
link and the RD-link, respectively. Then, the LATR becomes
1/(E[NSR|R1]/R1 + E[NRD|R1, R2]/R2) where E[NSR|R1]
and E[NRD|R1, R2] are expressed as

E[NSR|R1]=
L−1∑
l=1

l · P suc
SR,l(R1) + (L− 1)P out

SR,L−1(R1)

=

L−2∑
l=0

P out
SR,l(R1), (12a)

E[NRD|R1, R2] =

L−1∑
l1=1

(
P suc

SR,l1(R1)

L−l1−1∑
l2=0

P out
RD,l2(R2)

)
,

(12b)

respectively. The term,
∑L−l1−1

l2=0 P out
RD,l2

(R2) in (12b) repre-
sents the average number of HARQ rounds in the RD-link
when the SR-link uses l1 HARQ rounds. The optimization
problem finding the optimal R1 and R2 to maximize the LATR
is formulated as [Opt-HARQ]

max
R1,R2

C(R1, R2) =
1

E[NSR|R1]/R1 + E[NRD|R1, R2]/R2

(13a)
s.t. P out

SD,L(R1, R2) ≤ ϵ, R1, R2 ≥ 0. (13b)

We find the optimal R1 and R2 in infinite and finite L cases.
In the infinite L case, R∗

1 and R∗
2 can be found analytically.

But in the finite L case, we need a numerical search algorithm
to find R∗

1 and R∗
2.

1) Infinite L case: If L is infinite, (12a) can be derived as
follows (See Appendix B):

E[NSR|R1] =
∞∑
l=0

P out
SR,l(R1), (14a)

= exp(−2R1 − 1

ρSR
)

∞∑
l=0

∞∑
n=l

(
2R1 − 1

ρSR
)n/n!

=
2R1 − 1

ρSR
+ 1. (14b)



In addition, we find the limit of (12b) for infinite L. The term
in the summation is bounded by

P suc
SR,l1(R1)

L−l1−1∑
l2=0

P out
RD,l2(R2) ≤ P suc

SR,l1(R1)

L∑
l2=0

P out
RD,l2(R2). (15)

For infinite L and finite l1, it is clear that equality holds in (15).
For infinite L and l1, the right-hand side of (15) converges
to zero since lim

l1→∞
P suc

SR,l1(R1) → 0 and
∑L

l2=0 P
out
RD,l2

(R2) is

finite for finite R1 and R2. Therefore, we can say that equality
holds in (15) for any l1 value. For infinite L, (12b) can be
derived as follows:

E[NRD|R1, R2] =

∞∑
l1=1

(
P suc

SR,l1(R1)

∞∑
l2=0

P out
RD,l2(R2)

)
(16a)

=
∞∑

l2=0

P out
RD,l2(R2)

∞∑
l1=1

P suc
SR,l1(R1)

= exp(−2R2 − 1

ρRD
)

∞∑
l=0

∞∑
n=l

(
2R2 − 1

ρRD
)n/n!

=
2R2 − 1

ρRD
+ 1. (16b)

In (16a), we used (L − l1 − 1) → ∞ as L → ∞. In (16b),
we used

∑∞
l1=1 P

suc
SR,l1(R1) = 1. In (16b), we used the result

of (14). Interestingly, E[NRD|R1, R2] is not dependent on R2

in the infinite L case. Moreover, P out
SD,(R) goes to zero as L

goes to infinity. Therefore, the Opt-HARQ is formulated in
the infinite L case as

max
R1,R2

C(R1, R2) =
1(

2R1−1
ρSR

+ 1
)
/R1 +

(
2R2−1
ρRD

+ 1
)
/R2

s.t. R1, R2 ≥ 0.

The above optimization problem can be reformulated as

min
R1,R2

D(R1, R2)=

(
2R1 − 1

ρ
+ 1

)
/R1 +

(
2R2 − 1

ρ
+ 1

)
/R2,

s.t. R1, R2 ≥ 0.

We find R∗
1 and R∗

2 which satisfy δD(R1,R2)
δR1

|R1=R∗
1
= 0 and

δD(R1,R2)
δR2

|R2=R∗
2

= 0. These two equations are simplified
to ln 2 · 2R∗

1 · R∗
1 − 2R

∗
1 + 1 − ρSR = 0 and ln 2 · 2R∗

2 ·
R∗

2 − 2R
∗
2 + 1 − ρRD = 0, respectively, that is, D(R1, R2)

has a unique minimum point since each equation has unique
solution. Solutions of the two simplified equations are given
by

R∗
1 =

W
(
ρSR−1

e

)
+ 1

ln 2
,

R∗
2 =

W
(
ρRD−1

e

)
+ 1

ln 2
, (17)

respectively, where W (x) is the Lambert W function. If we
let z = W (x), z is a unique solution of x = z exp(z).
Interestingly, R∗

1 (R∗
2 ) does not depend on the channel

statistics in RD-link (SR-link). In order to compare the optimal

rate selection method with a non-optimal method, we consider
the following problem named as [Eq-Rate]

max
R1,R2

C(R1, R2) =
1(

2R1−1
ρSR

+ 1
)
/R1 +

(
2R2−1
ρRD

+ 1
)
/R2

,

s.t. R1 = R2 ≥ 0,

where the round transmission rates of two links are identical
to each other. We obtain the following equation: ln 2 · 2R∗ ·
R∗ − 2R

∗
+ (1 − 2

1/ρSR+1/ρRD
) = 0. Therefore, R∗

1 = R∗
2 =

R∗ =
W

((
2

1/ρSR+1/ρRD
−1

)
/e

)
+1

ln 2 .
2) Finite L case: If L is finite, the optimization problem,

Opt-HARQ, becomes too complicated to be tracked. At
first, C(R1, R2) is neither an increasing nor a decreasing
function and may have multiple local maximum points or
minimum points. Moreover, E[NRD|R1, R2] depends on R1

and R2. P out
SD,L(R) has a non-zero value in the finite L case.

However, we know P out
SD,L(R1, R2) is an increasing function

since the larger Ri requires the larger mutual information to be
successfully decoded. Empirically, we assume that C(R1, R2)
becomes a concave function within P out

SD,L(R1, R2) ≤ ϵ for
a small ϵ value such as ϵ ≤ 0.02. By using this assumption,
we propose a heuristic search algorithm to find R∗

1 and R∗
2.

At first, we fix a ratio α = R1/R2. For a fixed α, we find
Rϵ

1(α) such that P out
SD,L(R

ϵ
1, αR

ϵ
1) = ϵ. Since P out

SD,L is an
increasing function of R1, Rϵ

1(α) is easily found. We can
find Rmax

1 (α) = argR1
max C(R1, αR1) by using a golden

section method in the range, 0 ≤ R1 ≤ Rϵ
1(α) and then

we also can find the optimal R1 for a given α such that
R∗

1(α) = min(Rmax
1 (α), Rϵ

1(α)) since Rmax
1 (α) > Rϵ

1(α))
does not satisfy the outage probability constraint. We repeat
this process for different α values by changing α gradually.
Finally, we search α∗ which maximizes C(R∗

1(α), R
∗
1(α))

among many α values.

IV. PERFORMANCE COMPARISONS

We evaluate the performance of a two-hop relay network
for varying the placement of the relay node. The average
received SNR is modeled as a function of distance d [19]:
ρAB(d) =

PA
N0

σ2
AB = PA

N0
K
(
d0

d

)γ
, where the channel variance

σ2
AB is determined by the path loss, K is a unitless constant

depending on the antenna characteristics and the average
channel attenuation, d0 denotes the reference distance, and
γ is the path-loss exponent. As a representative simulation
example, we choose d0 =10 m, γ = 3, K = 1, and
PS/N0 = 60 dB. Let dAB denote the distance between nodes
A and B. Although dSD may vary in a very wide range, we
choose dSD = 800 m corresponding to a small average S-
D link SNR of 2.907 dB, which requires a relay node for
achieving a good LATR.

Fig. 1 shows the LATR versus dSR for the two-hop relay
without HARQ, the two-hop relay with HARQ with infinite
L, and the two-hop relay with HARQ with L = 3, 4 and 5
and ϵ = 10−2. Note that the two-hop relay without HARQ is
identical to the the two-hop relay with HARQ with L = 2.
The LATR is close to that in the infinite L case as L goes
to infinite. The non-HARQ two-hop relay scheme yields very
poor performance. The gap between the optimal rate selection
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0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

d
SR
 [m]

L
A
T
R
 [
b
p
s
/H
z
]

 

 
infinite L

L = 4

ε = 10
-2

ε = 10
-3

ε = 10
-4

Fig. 2. LATR versus dSR for the HARQ with an infinite L and HARQ with
a finite L = 4 when ϵ = 10−2, 10−3 and 10−4 and dSD = 800 m.

method and the Eq-Rate scheme (R1 = R2) in the infinite L
case increases as the relay node becomes close to the source
node or the destination node.

Fig. 2 shows the LATR versus dSR, for the HARQ with an
infinite L and HARQ with a finite number of L = 4 for three
different ϵ values of 10−2, 10−3 and 10−4. For HARQ with
a finite L, the outage probability constraint gives a critical
effect on the LATR performance. With a fixed L, the LATR
peformance degrades as ϵ decreases.

Fig. 3 shows the LATR versus L for the HARQ with finite
L with ϵ = 10−2, 10−3 and 10−4 when ρSR = ρRD = 10 [dB].
We can observe that for a fixed ϵ the LATR of HARQ with
a finite L is saturated to that of the HARQ with an infinite
L as L increases. Moreover, as ϵ decreases the larger L is
required to yield the same LATR performance. However, note
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Fig. 3. LATR versus L for the HARQ with a finite L with ϵ = 10−2, 10−3

and 10−4 when ρSR = ρRD = 10 [dB].

that the LATR of the infinite L case is not an upper bound of
LATRs of finite L cases. The infinite L case does not allow
any decoding failure, therefore, it is possible for a few packets
to require a large number of HARQ rounds to be successfully
decoded. If L is finite, although some packets are not decoded
successful, the number of HARQ rounds is limited to L. This
makes the finite L cases yield better LATR than that of the
infinite L case. However, for a small ϵ, this amount of LATR
gain is very negligible. Therefore, we do not focus on the
control of L.

V. CONCLUSIONS

We proposed to find the round transmission rates of the SR-
link and the RD-link of a two-hop relay network with CC-type
HARQ in order to maximize the LATR. For the two-hop relay
without HARQ, the optimal round transmission rates can be
found by using the convexity of the LATR at the constraint
boundary. For the two-hop relay with HARQ in the infinite
L and the finite L cases, we also found the optimal round
transmission rates. In the infinite L case, the optimal round
transmission rates are expressed as Lambert W functions and
each rate only depends on the channel statistics of its own
hop. In the finite L case, we proposed a numerically searching
algorithm to find the round transmission rates. The LART
performance is saturated to that of the infinite L case as L
goes to infinity for a small ϵ value. Our proposed rate selection
method outperforms the Eq-Rate method in the infinite L case
and the gain increases as the relay node becomes close to either
the source node or the destination node.
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APPENDIX A
PROOF OF THE CONVEXITY FOR D(R2)

Let A(R2) = log2

(
1 + ρSR

ρRD
− ρSR ln(1− ϵ)− ρSR

ρRD
2R2

)
and B(R2) = exp

(
2R2−1
ρRD

+ ln(1− ϵ)
)
/R2. Then, D(R2) =

1/A(R2) + B(R2). We note that A(R2) is a decreasing
function of R2 and A(R2) ≥ 0 within the constraint 0 ≤ R2 ≤
log2 (1− ρRD ln(1− ϵ)). The second derivative of D(R2) is
expressed as

D′′(R2) =
−A′′(R2) ·A(R2) + 2(A′(R2))

2

(A(R2))3
+B′′(R2),

(A.1)

where

A′(R2) =
−ρSR/ρRD · ln(2) · 2R2

1 + ρSR/ρRD − ρSR ln(1− ϵ)− ρSR/ρRD · 2R2
,

A′′(R2) =
−
(
ρSR/ρRD · ln(2) · 2R2

)2
(1 + ρSR/ρRD − ρSR ln(1− ϵ)− ρSR/ρRD · 2R2)

2 ,

B′′(R2) = B(R2)×((
ln(2) · 2R1

ρ2RD
− 1

R2

)2

+

(
(ln(2))2 · 2R1

ρ2RD
+

1

R2
2

))
.

By substituting A(R2), A
′(R2), A

′′(R2), and B′′(R2), we
can know that D′′(R2) is always greater than 0 within the
constraint 0 ≤ R2 ≤ log2 (1− ρRD ln(1− ϵ)).

APPENDIX B
DERIVATION OF (14)

E[NSR|R1] =
∞∑
l=0

P out
SR,l(R1),

= exp(−2R1 − 1

ρSR
)

∞∑
l=0

∞∑
n=l

(
2R1 − 1

ρSR
)n/n!

= exp(−2R1 − 1

ρSR
)

∞∑
n=0

n∑
l=0

(
2R1 − 1

ρSR
)n/n!

= exp(−2R1 − 1

ρSR
)

∞∑
n=0

(n+ 1)(
2R1 − 1

ρSR
)n/n!

= exp(−2R1 − 1

ρSR
)

∞∑
n=0

n(
2R1 − 1

ρSR
)n/n!

+ exp(−2R1 − 1

ρSR
)

∞∑
n=0

(
2R1 − 1

ρSR
)n/n!

= exp(−2R1 − 1

ρSR
)

∞∑
n=1

(
2R1 − 1

ρSR
)n/(n− 1)! + 1

= exp(−2R1 − 1

ρSR
)(
2R1 − 1

ρSR
)

∞∑
n=0

(
2R1 − 1

ρSR
)n/n! + 1

=
2R1 − 1

ρSR
+ 1.
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