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Abstract—In the last decade, there has been a tremendous
increase in both the number of mobile devices and the con-
sumer demand for mobile data communication. As a general
network architecture, ad hoc mobile networks are expected to
offload a large amount of mobile traffic in lots of promising
application scenarios. However, how to achieve a good balance
between delivery performances (like delivery delay and delivery
probability) and network resource consumptions (like power
energy and buffer storage) remains an extremely challenging
problem. In this paper, we focus on the general k-hop relay
routing, which covers a lot of popular routing schemes as special
cases, such as the direct transmission (k = 1), the two-hop relay
algorithm (k = 2), and the epidemic routing (k = n − 1). We
first develop absorbing continuous-time Markov chain models
to characterize the complicated message delivery process under
the general k-hop relay routing, and then conduct Markovian
analysis to derive all the above important performance metrics.
Finally, extensive numerical results are presented to illustrate the
achievable delivery performances under the general k-hop relay
and the possible performance trade-offs there.

I. INTRODUCTION

In the last decade, there have been a tremendous increase in
the number of mobile devices and also a sharp rise in consumer
demand for mobile data communication. According to [1], the
number of mobile-connected devices would exceed the world’s
population in 2012, and there will be over 10 billion mobile-
connected devices (including machine-to-machine modules) in
2016, approximately 1.4 mobile devices per capita. Further-
more, the mobile data traffic will grow at a compound annual
growth rate of 78 percent and increase 18-fold from 2011 to
2016, and by 2016 the monthly global mobile data traffic will
surpass 10 exabytes.

As a general network architecture, ad hoc mobile networks
are expected to offload a large amount of mobile traffic
in lots of promising application scenarios, such as disaster
relief, military troop communication, daily information ex-
change, etc. Note that in these applications, nodes are usually
sparsely distributed and it is rather difficult to find an end-
to-end routing path at any time instant. For such network
scenarios, how to deliver a message from end to end while
simultaneously achieving a good balance between delivery
performances (like delivery delay and delivery probability)
and network resource consumptions (like power energy and
buffer storage) remains an extremely challenging problem [2]–
[4]. Specifically, adopting too tight a control policy (like a
limited message lifetime or restricted relay transmissions) may

lead to poor message delivery performances; on the other
hand, a loose control policy may result in unnecessary wastes
of precious network resources, under which a message may
continue to be replicated among relay nodes even after its
arrival at the destination.

To address this challenging problem and thus enable a
nice trade-off between delivery performances and resource
consumptions to be efficiently achieved, a natural choice is to
restrict the number of hops that a message (copy) can travel
in the network. In this paper, we consider the general k-hop
relay routing where each message travels at most k hops to
reach the destination after leaving its source. Actually, the k-
hop relay routing covers a lot of popular routing schemes as
special cases, such as the direct transmission [5] (k = 1), the
two-hop relay algorithm [6] (k = 2), and the epidemic routing
[7] (k = n− 1), where n is the number of network nodes.

We introduce system models and the general k-hop relay
routing in Section II. In Section III, we first develop ab-
sorbing continuous-time Markov chain models to characterize
the complicated message delivery process under the typical
settings of k = {1, 2, 3, n − 1}, and then conduct Markovian
analysis to derive the important delivery performance metrics
including the expected delivery delay, the expected delivery
cost, and the message delivery probability under any given
message lifetime. Different from [8], we provide in this paper
general Markovian derivations for delivery delay, cost and
probability without deriving embedded discrete-time markov
chains. Extensive numerical results are presented in Section IV
to illustrate the achievable delivery performances under the
general k-hop relay and the possible performance trade-offs
there. Finally, we conclude this paper and discuss some future
works in Section V.

II. PRELIMINARIES

A. System Models

In this paper, we consider an ad hoc mobile network which
consists of n mobile nodes. Without loss of generality, we
focus on one source-destination pair, and denote by S and
D the source node and the destination node, respectively.
Suppose the node S has a single message, say M , to deliver
to the node D, and the other n− 2 relay nodes have no local
traffic to deliver and will act altruistically as pure relays in the
delivery process of M . We assume that M can be successfully
transmitted during the contact (or meeting) of each node pair.



For the more general cases where M is of message size that
cannot be transmitted during a single contact or S has multiple
messages to deliver to D, please refer to [9] for details.

We assume that the n mobile nodes move independently
in a closed square region, and the time elapsed between two
consecutive contacts of any node pair follows an exponential
distribution with mean 1/λ, i.e., the occurrence of contacts
between any two nodes follows Poisson distribution. The
parameter λ is called as inter-meeting intensity, which is
related to the network area, node moving speed, and node
transmission range [10]. This assumption has been demon-
strated to hold nicely for lots of popular mobility models, like
Random Direction model and Random Waypoint model, and
it has also been widely adopted in literature [11].

B. The General k-Hop Relay Routing

We consider the general k-hop relay routing in this paper,
1 ≤ k ≤ n−1, which covers a lot of popular routing schemes
as special cases, such as the direct transmission [5] (k = 1), the
two-hop relay algorithm [6] (k = 2), and the epidemic routing
[7] (k = n− 1). Under the k-hop relay routing, each message
(or copy) travels at most k hops to reach the destination node
after leaving the source node.

When operating under the k-hop relay, each copy of mes-
sage M (including the original one at the source S and the
redundant copies carried by other relay nodes) is labeled with a
hop count, which records the total number of hops the message
copy has traveled after leaving S. Specifically, the hop count of
the original M at S is always 0; when S (resp. a relay carrying
M ) replicates a new copy of M to other nodes, the new copy
is labeled with a hop count which is one hop bigger than
that at S (resp. the relay). In other words, for each message
replication, if the transmitter carries a copy of M which has
a hop count m, 0 ≤ m ≤ k − 1, the new copy received by
the receiver will have a hop count m + 1. Note that as the
maximum hop count is limited to k, only the relay nodes with
hop counts less than k−1 can further replicate out new copies
for M , while those with hop count k−1 can only forward the
message to the destination D.

There are four basic transmission modes in the k-hop relay:

• “Source-to-Destination” transmission: the source S di-
rectly transmits the message M to the destination D.

• “Source-to-Relay” transmission: S meets a relay node
and replicates out a new copy of M to the relay node.

• “Relay-to-Relay” transmission: two relay nodes come
into contact, and the relay node which carries a copy
of M replicates out a new copy of M to the other one.

• “Relay-to-Destination” transmission: a relay node meets
the node D and forwards M to D.

Note that for the case k = 1, only “Source-to-Destination”
transmission is available; for the case k = 2, there exist
only three basic transmissions, i.e., “Source-to-Destination”,
“Source-to-Relay”, and “Relay-to-Destination”.

C. Performance Metrics

For the general k-hop relay routing, we are interested with
the following popular performance metrics.

Delivery Delay: for a message M generated at S, the
delivery delay is defined as the time elapsed between the time
instant when S starts to deliver M and the time instant when
the destination D receives M .

Delivery Cost: the delivery cost of M is defined as the total
number of transmissions it takes M to travel from S to D.

Delivery Probability: given a message lifetime τ which
means M will be dropped from the network if it fails to reach
D within time τ , the delivery probability is defined as the
probability that D receives M before message expiration.

Reach: it is defined as the fraction of nodes (excluding S)
that end up carrying M when D receives M .

III. MARKOV CHAIN MODELS AND MARKOVIAN

DERIVATIONS

In this section, we first develop absorbing continuous-time
Markov chains to model the delivery process of message
M under the general k-hop relay routing, and then conduct
Markovian analysis to derive the corresponding delivery delay,
delivery cost, delivery probability, and reach.

Before the node D receives M , the network may experience
multiple transient states. Note that the transient states are of
short duration and they actually represent the possible network
states until the delivery process of M becomes absorbed.
Before proceeding to develop Markov chain models for the
k-hop relay, here we first introduce the transitions that may
happen among neighboring network states. With the k-hop
relay routing, the possible transition cases are as follows:

• SR transition: it corresponds to the “Source-to-Relay”
transmission, and accordingly the number of relay nodes
carrying M will be increased by one.

• RR transition: it corresponds to the “Relay-to-Relay”
transmission.

• SD or RD transition: it means that either the source S
or a relay node successfully delivers M to D, i.e., the
“Source-to-Destination” or “Relay-to-Destination” trans-
mission. It will shift the Markov chain into an absorbing
state and thus ends the delivery process of M .

• Self-Loop transition: it means that neither the destination
node nor a relay node receives M , and thus the network
will remain in the current state.

A. The Direct Transmission (Case k = 1)

The direct transmission, corresponding to the special setting
of k = 1, is the simplest case of k-hop relay routing. With
such setting, no relay nodes will be employed for helping
deliver the message M , and the destination D can only receive
M directly from the source S. Therefore, the delivery delay
of M can be determined as the time it takes S and D to
move into contact, and thus the delivery delay under the direct
transmission (case k = 1) is exponentially distributed with
mean 1/λ. Furthermore, as S will not replicate out any copy



Fig. 1. Absorbing continuous-time Markov chain for two-hop relay routing.

of M to other relay nodes, the corresponding delivery cost is
fixed as one.

B. The Two-Hop Relay (Case k = 2)

Under the two-hop relay routing (case k = 2), D either
directly receives M from S or receives M from a relay node
which has received a copy of M from S before. A relay node
carrying M cannot replicate M to other relay nodes except
forwarding M to D. Therefore, no RR transition will happen
during the delivery process of M .

We denote by A the absorbing state that M has been
received by D, and denote by i a network state that there are
i copies of M (including the original one at S) in the network
while D has not received M yet, 1 ≤ i ≤ n − 1. Suppose
the network system is within state i, 1 ≤ i ≤ n− 2, then we
can see that it may transit to different states under different
transition cases. Specifically, it will transit to state i+1 (resp.
state i) under the SR transition (resp. the Self-loop transition),
and it will enter state A under the SD or RD transition.

Since the network may enter absorbing state A via different
transient states, we denote by state (A, i) that the network
becomes absorbed via transient state i, 1 ≤ i ≤ n − 1. After
combining the possible transitions of all states i, 1 ≤ i ≤
n− 1, we obtain an absorbing continuous-time Markov chain
as illustrated in Fig. 1. One can easily observe from Fig. 1 that
there are in total n − 1 transient states and n − 1 absorbing
states. Given the Markov chain in Fig. 1 gets absorbed in state
(A, i), one can see that there are i − 1 relay nodes carrying
message M when D receives M . Thus, the corresponding
delivery cost and reach of message M can be determined as
i and i/n, respectively.

C. The Three-Hop Relay (Case k = 3)

With the three-hop relay routing, only the source S and the
relay nodes receiving M directly from S, can replicate M to
other nodes; a relay node which has received a copy of M
from another relay rather than from S, can only forward M
to the destination D. One can easily see that in the above
delivery process, there exist the following two kinds of relay
nodes: a relay node is called as a tier 1 relay if it receives
M directly from S; otherwise, if it receives M from a tier 1
relay, it is called as a tier 2 relay. Obviously, by restricting
the replication of M to S and tier 1 relay nodes, M travels at
most three hops to reach D.

Now we proceed to characterize the delivery process of
M under the three-hop relay routing. We denote by (i, j) a
transient state that there are i tier 1 relay nodes and j tier 2

(a) State transition diagram for j = 0

(b) State transition diagram for 1 ≤ j ≤ n− 4

(c) State transition diagram for j = n− 3

Fig. 2. Absorbing continuous-time Markov chain for three-hop relay routing.

relay nodes in the network, 0 ≤ i ≤ n − 2, 0 ≤ j ≤ n − 2,
0 ≤ i + j ≤ n − 2, and denote by (A,m) an absorbing state
that when D receives M there are m relay nodes carrying
M , 0 ≤ m ≤ n − 2. Suppose the network is within state
(i, j), the transitions that may happen are as follows: 1) SR
transition where the number of tier 1 relay nodes will be
increased by one and the network will transit to state (i+1, j);
2) RR transition which will increase the number of tier 2 relay
nodes by one and shift the network into state (i, j+1); 3) SD
or RD transition which will finish the delivery process and
thus shift the network into absorbing state (A, i+ j); 4) Self-
Loop transition under which the network will transit from state
(i, j) back to itself. After combining the transition cases of all
transient states (i, j), the delivery process of M can be defined
by a finite-state absorbing Markov chain as shown in Fig. 2.

Note that for the Markov chain in Fig. 2, Figs. 2a, 2b,
and 2c each represents some cases of the full Markov chain.
Specifically, Fig. 2a defines the transitions among neighboring
states where there is no more than one tier 2 relay node, i.e.,
j = 0; Fig. 2b represents the cases that tier 1 relay nodes
may deliver M to at most one more relay given that there are
already j tier 2 relay nodes, 1 ≤ j ≤ n − 4; Fig. 2c shows
how the node D may receive M when there are n− 3 tier 2
relay nodes. One can easily observe from Fig. 2 that there are
actually n − 2 rows of transient states. If we denote by Lm

the number of transient states in the mth row, 0 ≤ m ≤ n−3,
then we have Lm = n− 1 when m = 0 and Lm = n− 2−m
when 1 ≤ m ≤ n−3. Therefore, the total number of transient
states in the Markov chain of Fig. 2 can be calculated as
1

2
(n2 − 3n + 4). It is further noticed that there are in total

n − 1 absorbing states (A,m), 0 ≤ m ≤ n − 2. Given the
Markov chain of Fig. 2 becomes absorbed in state (A,m), the
corresponding delivery cost of M can be easily determined as



Fig. 3. Absorbing continuous-time Markov chain for the epidemic routing.

m+ 1, 0 ≤ m ≤ n− 2.

D. The Epidemic Routing (Case k = n− 1)

For the considered network which consists of one source-
destination pair and n−2 relay nodes, it takes M at most n−1
hops to reach D after leaving S. Therefore, there is actually no
limitation on the message replication behavior with k = n−1,
i.e., any node carrying M , no matter S or relay nodes, can
replicate out new copies of M to other relay nodes. A relay
node newly receiving M can further replicate it to other relay
nodes, resulting a message dissemination process identical to
the spreading of infectious diseases. Thus, the general k-hop
relay with k = n− 1 is also known as epidemic routing.

If we use state i to denote a transient state that there are i
copies of M in the network, 1 ≤ i ≤ n − 1, and denote by
state (A, i) the absorbing state that when D receives M there
are i mobile nodes carrying M , i.e., the last transient state
before absorption is state i, the delivery process of M under
the epidemic routing can then be defined by an absorbing
Markov chain shown in Fig. 3. Note that different from the
case k = 2 in Fig. 1, there exist RR transitions between
neighboring transient states i and i+1 in Fig. 3, 1 ≤ i ≤ n−2.

E. Markovian Derivations

For message M , we use Td, Cd, and Pd(τ) to denote the
delivery delay, the delivery cost, and the delivery probability
under message lifetime τ , respectively. Based on the Markov
chain models developed in Section III, we now proceed to
conduct Markovian analysis to derive E{Td}, E{Cd}, and
Pd(τ) for the general k-hop relay routing.

Suppose in the continuous-time Markov chain (CTMC),
there are in total β transient states and α absorbing states.
We number the β transient states sequentially as 1, 2, . . . , β
in a left-to-right and top-to-down way, and number the α
absorbing states sequentially as 1, 2, . . . , α similarly. After
combining the transition rates among all transient states in
the absorbing CTMC, we are able to define a transition rate
matrix Q = (qij)β×β , where the entry qij denotes the rate of
transiting from transient state i to transient state j, i, j ∈ [1, β].
Note that if there is no transition connecting states i and j,
the corresponding ij-entry in Q is 0. For each transient state
in the CTMC, the rate of transiting back to itself is always
negative. Therefore, all the main diagonal entries in Q, i.e.,
{qii}, 1 ≤ i ≤ β, are always of negative values.

After defining the transition rate matrix Q, the expected
delivery delay of M , i.e., E{Td}, can be determined as

E{Td} = −e ·Q−1 · c, (1)

where Q−1 is the inverse matrix of Q, the ij-entry of −Q−1

denotes the duration of network staying in state j given that it
starts from state i, e is the initial row vector e = (1, 0, . . . , 0),
and c is a column vector c = (1, 1, . . . , 1)T [12].

If M is associated with a limited lifetime τ , the delivery
probability Pd(τ) can be given by

Pd(τ) = 1− e · eτ ·Q · c, (2)

where the matrix exponential

eτ ·Q =

∞∑

m=0

τm

m!
Qm. (3)

Since there exists a delivery cost, say hm, when the CTMC
enters an absorbing state m, m ∈ [1, α], we can accordingly
define a column vector h = (hm)α×1. One can see that
in order to get the expected delivery cost E{Cd}, the only
remaining issue is to derive the probability of the CTMC
entering each absorbing state m, m ∈ [1, α]. If we use υlm
to denote the rate of the CTMC transiting from transient state
l to absorbing state m, and use υll to denote the rate of the
CTMC transiting from transient state l back to itself, l ∈ [1, β],
m ∈ [1, α], then we have the one-step transition probability
matrix R = (plm)β×α where the lm-entry plm is given by

plm = −
υlm
υll

. (4)

With R denoting the one-step probabilities of the CTMC
transiting from the β transient states to the α absorbing states,
E{Cd} can be given by

E{Cd} = e ·Q−1 ·D ·R · h, (5)

where D is the diagonal matrix with diagonal entry dii = υii,
and the ij-entry of matrix multiplication Q−1 ·D ·R denotes
the probability of the CTMC entering absorbing state j given
that it starts from transient state i, 1 ≤ i ≤ β, 1 ≤ j ≤ α.

As there is a new node receiving a copy of M after each
transmission, the expected reach can be therefore determined
as E{Cd}/n.

IV. NUMERICAL RESULTS

As illustrative examples, we fix λ as λ = 0.121 (con-
tact / hour), let n vary from 20 to 100, and summarize in
Figs. 4 and 5 the achievable performances of the general k-
hop relay routing. Note that the numerical results under other
settings of λ can also be easily obtained by our Markovian
derivations as well.

One can easily observe from Figs. 4a and 4b that by
allowing more hops (i.e., a bigger k) in the message deliv-
ery process, both the expected delivery delay and delivery
probability can be significantly improved. However, it is also
noticed that as k varies from 3 to n − 1, the performance
improvements of both delivery delay and delivery probability
are actually rather limited. A further careful observation of
Fig. 4a indicates that as n increases, the performance gap
between the settings of k = 3 and k = n− 1 remains almost
unchanged. Figs. 5a and 5b show how the expected delivery
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(b) Pd(τ) vs. τ

Fig. 4. E{Td} and Pd(τ) under the settings of k = {1, 2, 3, n− 1}.

cost and expected reach vary with n, respectively. We can see
that the gap between the curve of k = n−1 and that of k = 3
in both Figs. 5a and 5b, rises up sharply as n increases from
20 to 100. In light of the limited performance gains of both
expected delivery delay and delivery probability observed in
Fig. 4, a moderate value of k (e.g., k = 3 in Figs. 4 and 5,
which may depend on the actual network settings) may be
efficient enough to achieve a flexible trade-off between the
delivery performances and energy consumptions.

V. CONCLUSION

In this paper, we have investigated the popular delivery
performances for the general k-hop relay routing in ad hoc mo-
bile networks, like the delivery delay, the delivery probability,
the delivery cost, and average reach. Absorbing continuous-
time Markov chains have been developed to characterize the
message delivery process of the k-hop relay routing under
the typical settings k = {1, 2, 3, n − 1}. Extensive numerical
results have been further presented to show the achievable
delivery performances and the possible performance trade-offs
there. Our results indicate that the performance gains between
the settings of k = 3 and k = n − 1 could be rather limited,
and a moderate value of k can be efficient enough to achieve
a flexible trade-off between the delivery performances and
energy consumptions. One interesting future direction is to
extend the Markov chain models developed in this paper to
other settings of k, 3 < k < n− 1.
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(b) Expected reach vs. n

Fig. 5. E{Cd} and expected reach under the settings of k = {1, 2, 3, n−1}.
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