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Abstract—Available works either explore the order sense
capacity scaling laws or derive closed-form throughput results
for mobile ad hoc networks (MANETs) where a transmitter
randomly probes only once a neighboring node for possible
transmission. Obviously, such single probing strategy may result
in a significant waste of the precious transmission opportunities
in highly dynamic MANETs since the randomly selected node
may already get the packets that the transmitter hopes to deliver.
In this paper, we consider a two-hop relay MANET where each
transmitter may conduct multiple rounds of probing so as to iden-
tify a possible receiver. We first develop closed-form expressions
for per node throughput capacity in such probing-based network,
with a careful consideration of the time cost taken to probe
for an eligible receiver in each time slot. Extensive numerical
results are further presented to explore the possible maximum per
node throughput capacity, the corresponding optimum setting of
probing round limit, and also their relationships with the network
control parameters, like the probing time limit, the redundancy
limit and the number of users, etc.

I. INTRODUCTION

Mobile ad hoc networks (MANETs) in which mobile nodes

communicate to each other via wireless links without any

pre-existing infrastructure support or centralized management,

hold great promise for lots of applications, such as the last

mile wireless internet, vehicular ad hoc networks, disaster

relief, etc. However, the lacking of network capacity theory

characterizing the maximum achievable throughput between

all node pairs, is still a challenging roadblock for the massive

development and commercialization of such networks [1].

A lot of research efforts have been dedicated to exploring

the order sense capacity scaling laws in MANETs. Gross-

glauser and Tse [2] showed that by adopting a two-hop relay

algorithm, it is possible to achieve a Θ(1) per node throughput

for MANETs with i.i.d. mobility. Later, it was proved that the

constant throughput can also be achieved under other mobility

models, like random walk model [3], Brownian motion model

[4] and even the restricted mobility [5]. More recently, Neely

et al. [6] showed that in a cell-partitioned network with the

i.i.d. mobility, the O(1/
√
n) and O( 1

n logn
) throughput are

also achievable for each node by introducing redundant copies

in the packet delivery process. Li et al. [7] also considered

a cell-partitioned network which is first divided into n2α

cells and each cell is further divided into squares of area

n−2β . The authors showed that the throughput there is of

order O(nβ−α− 1

2 ) and Ω(n2β−α−1) if each node can only

move within its own cell. Ciullo et al. in [8] proved that the

throughput is Θ(mR2/n) under the correlated mobility, where

m is the number of clusters and R is the radius of a cluster

region.

By now, some closed-form throughput capacity results have

also been reported in literature. Neely et al. [6] derived the

network capacity for a cell partitioned MANET with i.i.d.

mobility, and showed that as the network size scales up the per

node throughput capacity there remains constant for a given

node density. The capacity results in [6] was later extended

to a delay-tolerant MANET with general Markovian mobility

[9]. In both [6] and [9], a transmitter in a cell randomly

selects a neighboring node as the receiver. Liu et al. [10], [11]

developed closed-form throughput results for two-hop relay

based MANETs with limited packet redundancy and flexible

power control.

Note that in all above works whenever a node getting

an opportunity to transmit, it randomly probes only once

a neighboring node for possible transmission, which may

result in a significant waste of the precious transmission

opportunities in highly dynamic MANETs since the randomly

selected node may already get the packets that the transmitter

hopes to deliver. In this paper, we consider a two-hop relay

MANET where each transmitter may conduct multiple rounds

of probing so as to identify a possible receiver. It is also

noticed that some results have already been reported for the

throughput capacity of such probing-based MANETs [12],

[13]. However, the data transmission time in [12], [13] is

assumed to be independent of the time taken to identify an

eligible receiver, i.e., no matter how many rounds of probing

are conducted by a transmitter, the remaining data transmission

time remains unchanged.

In this paper, we consider a more practical scenario where

the total time available for both receiver probing and data

transmission is limited during a node meeting, and develop

closed-form expressions for per node throughput capacity with

a careful consideration of the time cost taken to probe for

an eligible receiver. Based on the new throughput capacity

result, extensive numerical results are further provided to

explore the possible maximum per node throughput capacity,

the corresponding optimum setting of probing round limit, and

also their relationships with the network control parameters,

like the probing time limit, the redundancy limit and the



(a) Cell partitioned network and the
Protocol interference model.

(b) Division of a time slot.

Fig. 1. Illustration of system models.

number of users, etc.

The rest of this paper is organized as follows. Section II

introduces the system models, time slot division and routing

schemes considered in the paper. We derive closed-form

expressions for per node throughput capacity in Section III,

and present numerical results to explore the possible maximum

throughput capacity and optimum probing round limit in

Section IV. Finally, we conclude the whole paper in Section V.

II. SYSTEM MODELS AND ROUTING SCHEME

A. System Models

Similar to [11], we assume that n nodes move independently

in a square with unit area. As shown in Fig. 1a, the network

area is evenly divided into m × m cells, each cell of side

length 1/m. Time is assumed to be divided into slots of equal

duration, and the n nodes move among the m2 cells according

to the i.i.d. mobility model [6]. Initially, the n nodes are

randomly distributed. At time slot 0, a node randomly and

uniformly selects a cell from the m2 cells with probability

1/m2 independent of other nodes, and moves to the selected

cell at time slot 1. The node repeats the same process in every

subsequent time slot. One can see that under the i.i.d. model,

the network topology varies dramatically and can never be

predicted. We adopt the permutation traffic [2], [8], where each

node is not only the source of its locally generated traffic flow

but also the destination of a flow originated from another node.

The Protocol model first introduced in [14] is adopted here

to address the interference issue among simultaneous link

transmissions. Suppose at time slot t, node Ti is transmitting

to node Ri, as illustrated in Fig. 1a. If we denote by r the per

node transmission range and denote by dt(Ti, Ri) the distance

between Ti and Ri at time slot t, then we have dt(Ti, Ri) ≤ r.

In order to guarantee the data transmission from Ti to Ri to

be successful, according to the Protocol model, for any other

simultaneous transmitting node say Tj (j 6= i), we should

have dt(Tj , Ri) ≥ (1 + ∆)dt(Ti, Ri). Here ∆ > 0 is a

protocol defined guard factor so as to prevent other nodes

from transmitting simultaneously at too close a distance.

We adopt the transmission-group based MAC (medium

access control) scheme to schedule simultaneous link trans-

missions in the cell partitioned network [11], [15]. We as-

sume that a whole time slot will be allocated only for data

transmissions in one-hop range, and a node in a cell can only

transmit to nodes in one of the eight adjacent cells or the

same cell. Therefore, the per node transmission range r can

be determined as r =
√
8/m. For the transmission-group

based scheduling scheme, the distance parameter α, which

defines the vertical and horizontal distances between active

cells in a transmission-group, can be accordingly determined

as α = min{⌈(1 + ∆)
√
8 + 2⌉,m} [11].

B. Division of Time Slots

In order to enable an efficient utilization of limited channel

bandwidth, the probing technique is adopted for identifying

an eligible receiver in each time slot [13]. Under the receiver

probing technique, as shown in Fig. 1b that each time slot is

divided into four sub-slots: W1, W2, W3 and W4. Specifically,

in sub-slot W1, nodes in an active cell contend to become the

transmitter according to a DCF-style scheme as introduced

in [11], where each node starts its back-off counter with a

randomly selected seed, and the node whose counter is the

first to become zero announces itself as the transmitter. Sub-

slot W2 is used for destination checking, where the destination

node of the flow originated from the selected transmitter will

reply to the transmitter by broadcasting a message if it is in

the one-hop neighborhood. If no reply is heard in sub-slot W2,

the transmitter will proceed to conduct at most τ rounds of

receiver probing so as to identify an eligible receiver in sub-

slot W3; during each probing round the transmitter randomly

selects a neighboring node to check whether it can deliver out

some packets. Sub-slot W4 is reserved for packets transmission

from the transmitter to the receiver; if the transmitter fails to

find an eligible receiver in W3, it remains idle in W4.

As shown in Fig. 1b, the total time allocated for receiver

probing and data transmission in a time slot, i.e., sub-slots

W3 and W4, has fixed duration of L mini-slots, where the

first τ mini-slots are reserved for receiver probing. Since we

consider a limited channel bandwidth in this paper, without

loss of generality, we assume that a bundle of L− τ packets

can be transmitted during sub-slot W4. For the case that the

destination node replies to notify the transmitter in sub-slot

W3, we further assume that the transmitter will also transmit

a bundle of L− τ bits, so as to simplify the analysis.

C. Probing-Based Two-Hop Relay

We consider the probing-based two-hop relay algorithm

2HR-(τ, f) proposed in [12], [13], where each bundle (of L−τ
packets) is delivered to at most f distinct relay nodes, and a

transmitter conducts at most τ rounds of probing to select an

eligible receiver when its destination node is not in the one-

hop neighborhood. Since there are in total n distinct flows in

the network, without loss of generality, we focus on a tagged

flow hereafter and denote its source and destination by S and

D, respectively.

2HR-(τ, f) Algorithm: every time S announces to become

the transmitter in a time slot, it operates as follows:



Step 1: If S hears the reply from D in sub-slot W2, S
delivers a bundle of L−τ packets to D in sub-slot W4 (source-

to-destination transmission);

Step 2: Otherwise, S randomly performs one of the follow-

ing operations with equal probability:

• source-to-relay transmission: S randomly selects a one-

hop neighboring node V to see whether V carries a copy

for the head-of-line bundle at S. If so, S proceeds to

the next round of probing; otherwise, S stops probing

and sends to V a new copy for its head-of-line bundle in

sub-slot W4.

• relay-to-destination transmission: for each randomly se-

lected neighboring node V , S checks whether it carries

a bundle that V is currently requesting for. If so, S stops

probing and delivers the bundle to V in W4; otherwise,

S proceeds to the next round of probing.

For both Step 1 and Step 2 of the 2HR-(τ, f) algorithm,

packets are transmitted and received in bundles where each

bundle contains L − τ packets. It is noticed that in Step 2,

S will conduct at most τ rounds of receiver probing, and at

most f copies will be distributed for each bundle.

One can see from Step 2 of the 2HR-(τ, f) algorithm that

by allowing more rounds of probing (i.e., with a bigger τ ), the

probability that a transmitter can find an eligible receiver in a

time slot is also bigger; however, due to the time limitation for

receiver probing and data transmission, a smaller number of

packets can be transmitted from the transmitter to the receiver.

Therefore, for a MANET adopting the 2HR-(τ, f) algorithm,

the probing round limit τ should be carefully tuned so as to

maximize the per node throughput capacity there.

III. THROUGHPUT CAPACITY

Before proceeding to derive closed-form expressions for the

per node throughput capacity in a MANET adopting the 2HR-

(τ, f) algorithm, we first introduce the data delivery process

from the source to the destination. It is noticed that in the 2HR-

(τ, f) based MANETs, data is transmitted and received in

bundles. After a bundle is generated at the source, it typically

experiences two service processes before its arrival at the

destination, i.e., the dispatching process at the source and the

receiving process at the destination.

We focus on the dispatching process first. Consider a time

slot and a bundle say B at the source S of the tagged flow.

Suppose there are already k copies (including the original one

at S) of B in the network when the destination D starts to

request for B, 1 ≤ k ≤ f + 1. Then, one can see that in the

next time slot, the probability that S will deliver out a new

copy for B and the probability that S will directly send B to

D, depend only on the current network state, i.e., the current

spatial distribution of nodes in the network and the distribution

of the k − 1 bundle copies among the n− 2 nodes. Since the

dispatching process of each copy depends only on the network

state in the current time slot (i.e., independent of the network

states in previous time slots) and at most f copies will be

distributed for the bundle B, the dispatching process of B at

S can be modeled by a finite-state absorbing Markov chain.

Similarly, one can see that for the receiving process of the

bundle B, the probability that D will receive B in the next

time slot, also depends only on the network state in the current

time slot. Therefore, the receiving process of B at D can also

be defined by a finite-state absorbing Markov chain.

Given that there are k copies of B in the network when D
starts to request for B, 1 ≤ k ≤ f+1, if we denote by XS(k)
the time it takes S to finish the copy dispatching for B and

denote by XD(k) the time it takes D to receive B, then we

have the following lemma.

Lemma 1: For any 1 ≤ k ≤ f , the mean value of XS(k)
and XD(k), i.e., E{XS(k)} and E{XD(k)}, satisfy

E{XS(k)} < E{XS(k + 1)} (1)

E{XD(k)} > E{XD(k + 1)} (2)

Lemma 2: If we denote by XS the average bundle dispatch-

ing time and by XD the average bundle receiving time taken

over all bundles of the tagged flow, then we have

E{XS(1)} ≤ XS ≤ E{XS(f + 1)} (3)

E{XD(f + 1)} ≤ XD ≤ E{XD(1)} (4)

Lemma 3: For any 1 ≤ f ≤ f0 and 1 ≤ τ ≤ τ0, we have

E{XS(f + 1)} ≤ E{XD(f + 1)} (5)

where

f0 =
⌊ (n− 1)p2
p2 + 2(n− 2)p1

⌋

(6)

τ0 = min
{

L,
⌊n− 1− f

f2
− 2(n− 2)p1

p2 · f
⌋}

(7)

p1 =
1

α2

{

9n−m2

n(n− 1)
−

(

m2 − 1

m2

)n−1
8n+ 1−m2

n(n− 1)

}

(8)

p2 =
1

α2

{

m2 − 9

n− 1

(

1−
(

m2 − 1

m2

)n−1)

−
(

m2 − 9

m2

)n−1}

(9)

Based on (8) and (9), one can easily verify that for almost

all (n,m) settings, we always have p1 < p2

2 · n−3
n−2 < p2

2 .

Therefore, the right-hand side in (6) satisfies
(n−1)p2

p2+2(n−2)p1

> 1,

and thus f0 ≥ 1.

Combining (5) with the results in Lemmas 1 and 2, one

can see that for any f ∈ [1, f0] and τ ∈ [1, τ0], the smallest

average bundle receiving time at D is always bigger than the

biggest average bundle dispatching time at S. Therefore, we

have the following theorem.

Theorem 1: Given that in each time slot the time allocated

for receiver probing and data transmission is fixed as L
mini-slots among which the first τ mini-slots are reserved

for receiver probing, then the per node throughput capacity

µ (packets/slot) in the 2HR-(τ, f) based MANETs can be
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Fig. 2. Per node throughput capacity µ vs. probing round limit τ .

determined as

µ = p1(L− τ) +
f · (m2 − 9)n−2 · (L− τ)

2α2(n2 − 3n+ 2)m2n−2

n−3
∑

k=0

(

n− 1

k + 2

)

·9
k+2 − 8k+2

(m2 − 9)k
· (k + 1)τ (n− 2)τ − kτ (n− 2− f)τ

(n− 2)τ−1(k + 1)τ−1(n− 2 + kf)
(10)

for any f ∈ [1, f0] and τ ∈ [1, τ0], where f0, τ0 and p1 are

given in (6), (7) and (8), respectively.

The proofs of Lemmas 1, 2, 3 and Theorem 1 are similar

to that in [13] and are omitted here due to space limit.

One can observe from (10) that the probing round limit τ
is actually very complicatedly involved in the calculation of

per node throughput capacity µ.

IV. NUMERICAL RESULTS

Based on the per node throughput capacity result in Sec-

tion III, in this section we analytically explore the maximum

per node throughput capacity and the corresponding optimum

setting of probing round limit to achieve it.

We first show that there does exist an optimum setting of

probing round limit at which the per node throughput capacity

is maximized. We considered two network scenarios, i.e., (n =
300,m = 16, L = 30) and (n = 500,m = 24, L = 40), and

for each network scenario we examined three different settings

of bundle redundancy limit f . The corresponding results were
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Fig. 3. Optimum probing round limit τ∗ vs. the number of mini-slots L and
the bundle redundancy limit f .

summarized in Fig. 2. One can easily observe from Figs. 2a

and 2b that, for each setting of f there, there does exist an

optimum setting of τ to achieve the maximum µ. For example,

for the settings of f = 2, 3 and 4 in Fig. 2a, a maximum per

node throughput of 1.07×10−2, 1.23×10−2 and 1.39×10−2

is achieved at the setting τ = 5, 6 and 7, respectively; while

for the settings of f = 3, 4 and 5 in Fig. 2b, a maximum per

node throughput of 9.73×10−3, 1.13×10−2 and 1.28×10−2

is achieved at the setting τ = 8, 9 and 9, respectively.

Hereafter, we denote by µ∗ the maximum per node through-

put capacity and by τ∗ the corresponding optimum setting of

probing round limit, and proceed to explore their relationship

with the control parameters, such as the number of mini-slots

L, the bundle redundancy limit f and the number of users n.

Fig. 3 shows how the τ∗ varies with the number of mini-

slots L and the bundle redundancy limit f . As shown in

Fig. 3a, τ∗ monotonically increases as L varies from 10 to

50 and τ∗ is actually a piecewise function of L, i.e., a specific

value of τ∗ can only apply to a small range of L. A further

careful observation of Fig. 3a indicates that under the same

setting of L, the τ∗ value of a bigger f is also bigger. It

can be interpreted as follows: by adopting a bigger f (i.e.,

allowing more relay nodes to carry redundant copies for a

bundle), the probability that the source can find a relay node

without carrying a copy in a single probing becomes smaller,

therefore, the source needs to conduct more rounds of probing
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Fig. 4. Maximum throughput capacity µ∗ and the optimum probing round
limit τ∗ vs. the number of users n.

so as to identify an eligible receiver and deliver out a new copy.

For the case of (n = 450,m = 24) and L = {20, 30, 40},

the relationship between τ∗ and the bundle redundancy limit

f is illustrated in Fig. 3b. One can see from Fig. 3b that as f
varies from 1 to 10, for each setting of L there, the τ∗ first

increases and then decreases. Specifically, for the setting of

L = 20, 30 and 40, the τ∗ starts to decrease as f increases

beyond f = 8, 7 and 6, respectively. Actually, such behavior

is due to the limitation of τ0 in (7). According to (7), one

can see that the τ0 monotonically decreases as f increases up

which unavoidably results in a narrower range for the selection

of τ , and thus the curves of all three settings in Fig. 3b finally

converge to the same one.

With m fixed as m = 24, we summarize in Fig. 4 how

the number of users n would affect the maximum throughput

capacity µ∗ and the corresponding τ∗ under the settings of

(f = 3, L = 40), (f = 4, L = 30) and (f = 5, L = 20).
As shown in Fig. 4a that, for each setting of (f, L) there, the

µ∗ diminishes quickly as n increases up. For example, for the

case of (f = 3, L = 40), the µ∗ of n = 600 is 8.64 × 10−3,

which is almost 0.68 times that of n = 300 (1.26 × 10−2).

From Fig. 4b, one can easily see that the corresponding τ∗ is

actually a piecewise function of n, which is similar to that in

Fig. 3a. A further careful observation of Fig. 4b indicates that

as n increases up, the optimum setting τ∗ becomes gradually

insensitive to the variations of n, i.e., a specific value of τ∗

can apply to a longer range of n. However, this is not the case

for that in Fig. 3a, which means that τ∗ depends much more

heavily on the variations of L.

V. CONCLUSION

In this paper, we have investigated the per node throughput

capacity of probing-based two-hop relay MANETs. Different

from previous works, we developed closed-form throughput

capacity results where the time cost taken to probe for an

eligible receiver in a time slot was carefully considered in the

theoretical analysis. Extensive numerical results were further

provided to explore the maximum throughput capacity µ∗

and the corresponding optimum probing round limit τ∗. Our

results show that µ∗ diminishes quickly as the number of

users increases, and τ∗ is actually a piecewise function of

the probing time limit, the redundancy limit and the number

of users.
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