
A Framework for Information Propagation in Mobile 

Sensor Networks  

 

© 2013 IEEE. Personal use of this material is permitted. Permission from 

IEEE must be obtained for all other uses, in any current or future media, 

including reprinting/republishing this material for advertising or 

promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component of 

this work in other works. 

 

This material is presented to ensure timely dissemination of scholarly and 

technical work. Copyright and all rights therein are retained by authors or 

by other copyright holders. All persons copying this information are 

expected to adhere to the terms and constraints invoked by each author's 

copyright. In most cases, these works may not be reposted without the 

explicit permission of the copyright holder.  

 

Citation: 

Jiajia Liu, Hiroki Nishiyama, and Nei Kato, "A Framework for Information 

Propagation in Mobile Sensor Networks," IEEE International Conference on 

Mobile Ad-hoc and Sensor Systems (MASS) 2013, Hangzhou, China, Oct. 

2013.  

 

URL: 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6680243 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6680243


A Framework for Information Propagation in Mobile Sensor Networks

Jiajia Liu, Hiroki Nishiyama and Nei Kato
Graduate School of Information Sciences

Tohoku University
Sendai, Japan

Email: {liu-jia,bigtree,kato}@it.ecei.tohoku.ac.jp

Abstract—A common complication for routing in mobile
sensor networks is how to efficiently control the forwarding
behaviors of relay nodes so as to save their energy consumption
and buffer usage while simultaneously satisfy the specified de-
livery performance requirement. Available works either assign
each message with a lifetime, a maximum number of copies,
or a sequence number, or flush special feedback information
among the whole network after the message reception. In
the former case, a relay node has no idea of the message
reception status and will carry and forward the message
until meeting the destination; while the latter could efficiently
notify all relay nodes but demands extra communication
resources. Different from previous studies, we consider in this
paper an explicit probabilistic stopping mechanism for relay
nodes. Under such mechanism, a relay node that is actively
disseminating a message will stop spreading the message with a
certain probability, after meeting another node having already
received the message. We first develop a two-dimensional
Markov chain framework to characterize the highly compli-
cated dynamics until the end of message propagation, then
conduct Markovian analysis to derive the associated important
performance metrics, including the average time required for
the completion of message propagation, the expectation and
variance of the fraction of nodes finally receiving the message,
and the probability that a given number of nodes end up
with the message, etc. Finally, extensive numerical results are
provided to analytically explore how the network parameter
settings may affect these performance metrics.

Keywords-mobile sensor networks; information propagation;
routing; Markov chain;

I. INTRODUCTION

Mobile sensor networks hold great promise for lots of
applications, such as animal tracking, habitat monitoring,
etc. In such networks, each node has only local knowl-
edge, limited buffer space for storage, and constrained
power energy for computation or message transceive [1].
Consequently, a node pair can communicate with each
other only when they move into reciprocal communication
range. As mobile nodes are usually sparsely distributed and
move randomly in the network region, it is very difficult
(if not impossible) to find or specify a routing path to
deliver the traffic flow from the source to the destination.
Note also that, establishing a routing path usually comes
with lots of unavoidable communication overheads, such
as routing request, routing respond, neighborhood update,
etc., which necessarily impose a significant extra burden

on the resource-limited sensor nodes. Furthermore, even
after taking up lots of precious network resources, a newly
established routing path may function effectively only for a
short time period and become invalid soon due to the random
node mobilities. Therefore, in light of the practical resource
limitation at each node, the traditional route-based routing
schemes function poorly and cannot be adopted in mobile
sensor networks [2].

As a consequence, mobile sensor networks have switched
to rely on node mobilities and their contact sequences to
enable messages to be delivered from end to end. One
common feature of such kind of routing schemes is that,
multiple nodes are usually employed as relays to help the
source to disseminate a message and thus improve its deliv-
ery performances (e.g., the end-to-end delivery probability,
the delivery delay), so as to compensate the lack of commu-
nication opportunities. However, a common complication is
how to efficiently control the forwarding behaviors of relay
nodes so as to save their energy consumption and buffer
usage while simultaneously satisfy the specified delivery
performance requirement.

There has been several prior works in this line. In [2], a
family of routing schemes were proposed for intermittently
connected mobile networks, in which only a fixed number
of copies will be distributed for each packet (or message). In
[3], Liu et al. studied the impact of message lifetime on the
message delivery performances, where a lifetime is assigned
to each message copy, and a message will be dropped from
the node buffers immediately after its expiration. Besides
limiting the number of copies or message lifetime, sequence
number based mechanism has also been proposed to help
remove remnant copies of packets that have already been
received by the destination node. In [4], each packet is
labeled with a sequence number, and the destination node
maintains a request number to indicate the sequence number
of the packet that is currently under requesting. Relay nodes
flush out all packets with sequence number less than the
request number after obtaining it during the meeting with the
destination. More recently, the mechanism in [4] has been
further generalized to a group number based scheme [5]. It
is also noticed that explicit notification based approach has
also been proposed, under which a special anti-packet will
be flooded among the whole network as soon as a packet is



delivered from a relay node to the destination node [6]–[8].
Note that above works either assign each message with a

lifetime [3], a maximum number of copies [2], or a sequence
number [4], [5], or flush special feedback information among
the whole network after the message reception [6]–[8]. In
the former case, a relay node has no idea of the message
reception status and will carry and forward the message until
meeting the destination; while the latter could efficiently
notify all relay nodes but demands extra communication
resources.

Different from previous studies, we consider in this pa-
per an explicit probabilistic stopping mechanism for re-
lay nodes. Under such mechanism, a relay node that is
actively disseminating a message will stop spreading the
message with a certain probability, after meeting another
node having already received the message. We first develop
a two-dimensional Markov chain framework to characterize
the highly complicated dynamics until the end of message
propagation, then conduct Markovian analysis to derive
the associated important performance metrics, including
the average time required for the completion of message
propagation, the expectation and variance of the fraction
of nodes finally receiving the message, and the probability
that a given number of nodes end up with the message,
etc. Finally, extensive numerical results are provided to
analytically explore how the network parameter settings may
affect these performance metrics.

The remainder of the paper is outlined as follows. In
Section II, we introduce the considered system models and
the performance metrics of interest. Section III presents the
two-dimensional Markov chain framework and the related
derivations. Section IV applies the developed theoretical
framework to analytically explore the relationship between
considered performance metrics and network parameters.
Section V concludes the whole paper.

II. PRELIMINARIES

A. System Models

Consider a mobile sensor network with n nodes moving
randomly in the network region. Suppose the nodes are
sparsely distributed that every time two nodes move within
reciprocal transmission range, they can communicate with
each other. Furthermore, we assume that only a limited
number of packets can be transmitted during each node
contact and we assume it to be W bits. Similar to previous
studies [6], [7], we assume that for any two nodes, the
occurrence of their contacts follows a Poisson distribution
with inter-meeting intensity λ contacts/hour.

We consider a scenario where nodes need to disseminate
their data to other nodes in the network. The data can
be some events or measures sensed in a particular area,
program packages to update embedded software, or system
reconfigure commands, etc. Since our focus in this paper
is to evaluate the impact of relay forwarding behaviors on

network delivery performances, we assume that the data
(or message) is of size no bigger than W bits and can be
successfully transmitted during a single node contact. For
the general case that the message is of size bigger than W
bits and needs multiple contacts to be transmitted, please
refer to [3] for details.

Without loss of generality, hereafter we focus on a specific
message and study its propagation process in the network.
In order to develop a general theoretical framework for
characterizing the propagation process of the message and
analyzing its delivery performances, we assume that there
are m nodes, which are randomly and uniformly distributed
in the network region, actively disseminating the message
at the very beginning, 1 ≤ m ≤ n. Note that as a node
can obtain only limited knowledge when encountering other
nodes, it makes individual decisions based on the acquired
information so as to conserve its energy power and buffer
space. Therefore, we consider in this paper an explicit prob-
abilistic stopping mechanism for relay nodes, under which
a relay node that is actively disseminating the message will
stop spreading the message with a certain probability after
meeting another node having already received the message.

Specifically, when a relay node R that is actively replicat-
ing copies for the message meets another node K, if K has
not received the message yet, R replicates the message to
K; if K is also actively disseminating the message, both R
and K will stop spreading the message with probability p/2,
since either of them has the same probability to become the
transmitter, 0 ≤ p ≤ 1; however, if K has already stopped
disseminating the message, R will choose not to spread the
message any more with probability p.

B. Performance Metrics

According to the probabilistic stopping mechanism
adopted by each node, a node newly receiving the message
will actively disseminate the message for a random time
period, until it decides to stop spreading the message after
meeting another node having already received the message.
Therefore, one can see that, finally, there will be no nodes
trying to disseminate the message in the network, i.e., the
propagation process of the message will terminate in the
end.

The first performance metric of our interest is the mean
time required for the completion of the message propagation
process. Given that there are m out of the n nodes actively
disseminating the message at the very beginning, we denote
by t(m,n) the mean time it takes the message propagation
process to terminate, i.e., the average lasting time of the
propagation process. This metric can describe the statistical
convergence speed of the dynamic stochastic process, i.e.,
how fast the probabilistic stopping behavior individually
adopted by each node could drive the propagation process
to end.



We are also interested with the fraction of mobile sensors
that receive the message at the completion of the message
propagation process. This performance metric is also called
as the reach of a stochastic process, since it tells the degree
(or percentile) for the message to finally make itself acquired
by the n nodes. If we denote by E{r(m,n)} the mean
value of the fraction of nodes finally receiving the message
and denote by Var{r(m,n)} its variance, one can see that
m/n ≤ E{r(m,n)} ≤ 1.

Another performance metric to be explored is the prob-
ability for a given number of nodes to end up with the
message. We denote by P (i) the probability that there are
i nodes (including the initial m nodes) finally receiving
the message, m ≤ i ≤ n. Actually, one can see that
the probability mass function of discrete random variable
r(m,n) is closely related to {P (i)}. In particular,

Pr
(
r(m,n) = j/n

)
=

{
0 if 0 ≤ j < m;

P (j) if m ≤ j ≤ n.
(1)

Furthermore, both E{r(m,n)} and Var{r(m,n)} can be
obtained by P (i) as follows:

E{r(m,n)} =
n∑

i=m

P (i) · i

n
(2)

Var{r(m,n)} =

n∑
i=m

P (i) · i2

n2
−
( n∑

i=m

P (i) · i

n

)2

. (3)

III. TWO-DIMENSIONAL MARKOV CHAIN FRAMEWORK

AND DERIVATIONS

In this section, we first develop a two-dimensional Markov
chain framework to characterize the highly complicated
dynamics until the end of message propagation process,
then conduct Markovian analysis to derive the associated
important performance metrics, including the average time
t(m,n) required for the completion of message propagation,
the expectation and variance of the fraction of mobile
sensors finally receiving the message, i.e., E{r(m,n)} and
Var{r(m,n)}, and the probability P (i) that i nodes end up
with the message, etc.

A. Two-Dimensional Markov Chain Framework

We develop a two-dimensional Markov chain framework
in three steps. First, we use a two-tuple to define a general
network state which corresponds to a snapshot of the compli-
cated message propagation process, and identify all transient
states and absorbing states. Then, we define the transitions
for each transient state and calculate the corresponding
transition rates between neighboring states. Finally, after
integrating the transitions among all network states, we
obtain a full Markov chain framework to characterize the
whole message propagation process.

Recall that each node makes individual decisions on
whether or not to stop spreading the message. According

(a) (b)

Figure 1. Transitions for a transient state (i, j), where v0(i, j), v1(i, j),
and v2(i, j) correspond to the rates of self-loop transition, case 1 transition,
and case 2 transition, respectively. (a) Case 1 ≤ i ≤ n, 1 ≤ j ≤ n −m.
(b) Case 1 ≤ i ≤ n, j = 0.

to the node behaviors of disseminating the message, all the
n nodes can be divided into three groups: the nodes that
have not received the message yet, the nodes that are actively
disseminating the message, and the nodes that have received
the message but do not disseminate it. At the very beginning,
we have m nodes actively disseminating the message, and
n − m nodes without receiving the message; while at the
end of the message propagation process, there is no nodes
actively disseminating the message.

As motivated by the above divisions of nodes and also
to capture all states that may appear within the message
propagation process, we use a two-tuple (i, j) to represent
a network state that there are i nodes actively disseminating
the message and j nodes without receiving the message.
Since the number of nodes is fixed in the considered net-
work, the number of nodes that have stopped disseminating
the message within the state (i, j) can be determined as
n − i − j. Accordingly, the message propagation process
starts from state (m,n − m), and terminates at states
{(0, k)|0 ≤ k ≤ n −m}. Obviously, the network state will
never change if it evolves into i = 0. Therefore, the states
{(0, k)|0 ≤ k ≤ n − m} are absorbing states, while the
remaining states {(i, j)|1 ≤ i ≤ n, 0 ≤ j ≤ n − m} are
transient states.

Suppose the network is within a transient state (i, j) with
i ≥ 1, j ≥ 0. Then, only one of the following three cases
may happen:

• Case 1 Transition: a node replicates a copy of the
message to another node and accordingly the network
will transit to state (i+ 1, j − 1);

• Case 2 Transition: a node decides not to disseminate
the message any more and accordingly the network will
transit to state (i− 1, j);

• Self-loop Transition: neither of the above two cases
happens and the network will stay in state (i, j).

Based on the above analysis for the possible transitions
from a general transient state (i, j), if we denote by v0(i, j),
v1(i, j), and v2(i, j), respectively, the transition rate to state
(i, j), the transition rate to state (i + 1, j − 1), and that to
state (i− 1, j), the transitions for state (i, j) can be defined
as Fig. 1. It is noticed from Fig. 1(b), there is only case 2



transition leaving state (i, j) when j = 0.
After defining the transitions for each transient state (i, j),

i ≥ 1, j ≥ 0, we now proceed to calculate the transition
rates v0(i, j), v1(i, j), and v2(i, j). Note that the case 1
transition happens as long as one of the i nodes meets one of
the j nodes. Since the inter-meeting time between any two
nodes follows an exponential distribution with mean 1/λ,
the case 1 transition can be regarded as the minimum of i ·j
exponentially distributed variables. Therefore, the transition
rate v1(i, j) can be given by

v1(i, j) = i · j · λ (4)

Similarly, we have

v2(i, j) = i · (n− i− j) · λ · p+

(
i

2

)
· λ ·

p

2
· 2

= (n− j −
i+ 1

2
) · i · λ · p (5)

and

v0(i, j) = −v1(i, j)− v2(i, j)

= −
(
(1− p)j + (n−

i+ 1

2
)p
)
· i · λ (6)

If we integrate the transitions among all network states
(including all transient states and absorbing states), we
obtain a Markov chain framework as illustrated in Fig. 2,
which is able to fully characterize the message propagation
process. Given that there are m nodes actively disseminating
the message at the very beginning, 1 ≤ m ≤ n, as shown in
Fig. 2, the two-dimensional Markov chain accordingly starts
from the state (m,n−m), and may become absorbed in an
absorbing state {(0, k)|0 ≤ k ≤ n−m}.

B. Derivations of Performance Metrics

Based on the absorbing continuous-time Markov chain
shown in Fig. 2, we now proceed to derive the average time
t(m,n) required for the completion of message propagation,
the expectation and variance of the fraction of mobile
sensors finally receiving the message, i.e., E{r(m,n)} and
Var{r(m,n)}, and the probability P (i) of i nodes receiving
the message at the completion of message propagation,
m ≤ i ≤ n. The basic methodology is as follows: first,
we adopt the theory of absorbing Markov chain to derive
the above performance metrics via matrix operations; then,
we utilize the theory of blocking matrix to define the details
for the related matrices.

It is easy to observe from Fig. 2 that, there are in total
n−m+1 rows of network states, one absorbing state within
each row. If we number these n−m+ 1 rows sequentially
as 0, 1, 2, . . . , n−m from top to down, then we can see that
the total number of transient states in the kth row can be
determined as

Lk = k +m if 0 ≤ k ≤ n−m. (7)

If we denote by β the total number of transient states in
Fig. 2, then we have

β =

n−m∑
k=0

Lk =
(n+m)(n−m+ 1)

2
. (8)

To facilitate the expressions, we number the β transient
states sequentially as 1, 2, 3, . . . , β in a left-to-right and top-
to-down way, and number the n − m + 1 absorbing states
sequentially as 1, 2, 3, . . . , n−m+1 in a top-to-down way.

The continuous-time Markov chain in Fig. 2 defines all
the incoming and outgoing transitions (or jumps) for all
network states. Note that there exists an absorbing discrete-
time Markov chain (DTMC) embedded just before the jumps
of the Markov chain in Fig. 2, among which the transition
from a transient state to another neighboring transient state
may happen with certain probability closely related to the
associated transition rates in Fig. 2. If we denote by P =
(qij)(β+n−m+1)×(β+n−m+1) the one-step transition matrix
of the discrete-time Makrov chain embedded in Fig. 2, then
we have

P =

(
Q R

0 I

)
, (9)

where Q is a β × β matrix defining the one-step transition
probabilities among all β transient states in the embedded
DTMC, R is of size β × (n−m+1) defining the one-step
transition probabilities from β transient states to n−m+1
absorbing states, 0 is a β × β zero matrix, and I is the
identity matrix of size (n − m + 1) × (n − m + 1). Note
that (9) is also called as the canonical form of an absorbing
Markov chain [9].

For the embedded DTMC, if we denote by N its funda-
mental matrix. Then according to the Markov chain theory
[9], we have

N = (I−Q)−1. (10)

It is noticed that the tk-entry of the fundamental matrix
N, i.e., N(t, k), t, k ∈ [1, β], actually represents the total
number of visits to state k before the embedded DTMC
becomes absorbed, given that the Markov chain initially
starts from state t. It is further noticed from the transition
rate (6), the sojourn time in each transient state is actually
an exponentially distributed variable with mean −1/v0(i, j).
Without incurring any ambiguity, hereafter, we use notations
of v0(k), v1(k), and v2(k) interchangeably with v0(i, j),
v1(i, j), and v2(i, j), respectively, to represent the transition
rates for a transient state (i, j) with sequence id k.

Thus, the average time t(m,n) required for the comple-
tion of message propagation in the considered network, can
be given by

t(m,n) =

β∑
k=1

N(1, k) ·
(
−

1

v0(k)

)
= e ·N ·V0, (11)



Figure 2. Transition diagram of the Markov chain for characterizing the message propagation process, 1 ≤ m ≤ n. The shaded states are absorbing
states.

where e = (1, 0, 0, . . . , 0) is the initial row vector of size
1× β, V0 is the β × 1 average sojourn time vector defined
as

V0 =
( −1

v0(1)
,

−1

v0(2)
,

−1

v0(3)
, . . . ,

−1

v0(β)

)T

. (12)

Now we proceed to derive the expectation and variance of
the fraction of mobile sensors finally receiving the message,
i.e., E{r(m,n)} and Var{r(m,n)}, and the probability P (i)
of i nodes receiving the message at the completion of
message propagation. From (2) and (3), we can see that in
order to derive E{r(m,n)} and Var{r(m,n)}, we need to
first obtain {P (i)}, m ≤ i ≤ n. Recall that there are in total
n−m+1 absorbing states, and the embedded Markov chain
may enter each absorbing states with a certain probability.
If we denote by bk the probability that the Markov chain
becomes absorbed in the absorbing state k, given the chain
initially starts from transient state 1, therefore, we have

P (i) = bi−m+1 if m ≤ i ≤ n. (13)

Equation (13) follows after the observation that if there are
i nodes finally receiving the message, the Markov chain
accordingly enters absorbing state (0, n − i), which has a
sequence id i−m+ 1.

It is notable that for the DTMC embedded in the Markov
chain of Fig. 2, only the last transient state in the (k− 1)th
row (i.e., the row with sequence id k−1), 1 ≤ k ≤ n−m+1,
has transition into the absorbing state k. Further note that
the last transient state in the (k − 1)th row corresponds to
state (1, n−m−k+1), which has a sequence id

∑k−1
t=0 Lt =

(2m+k−1)k/2. Therefore, the probability that the Markov

chain becomes absorbed in the absorbing state k can be
determined as

bk = N
(
1,

(2m+ k − 1)k

2

)
·

v2(1, n−m− k + 1)

−v0(1, n−m− k + 1)
.

(14)
Combining (14) with (13), we have

P (i) = −N
(
1,

(m+ i)(i−m+ 1)

2

)
·
v2(1, n− i)

v0(1, n− i)
. (15)

After obtaining t(m,n), E{r(m,n)}, Var{r(m,n)}, and
{P (i)} via matrix operations as derived in (11), (2), (3),
and (15), we now proceed to utilize the theory of blocking
matrix to derive the matrices Q and N.

We first derive the matrix Q. It is observed that for a
transient state in Fig. 2, the Markov chain may either transit
from it to a transient state in the same row or back to itself,
or transit from it to another neighboring state in the next row.
As motivated by such observation, we define the matrix Q

as follows

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q0 Q
′

0

Q1 Q
′

1

. . .
. . .

Qk Q
′

k

. . .
. . .

Qn−m−1 Q
′

n−m−1

Qn−m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)
where each main diagonal entry Qk is of size Lk ×Lk and
defines the one-step transition probabilities among transient



states within row k of the DTMC embedded in Fig. 2, and
each upper diagonal entry Q

′

k is of size Lk × Lk+1 and
defines the one-step transition probabilities from transient
states of row k to that of row k+1 in the embedded DTMC.

We now proceed to derive submatrices {Qk} and {Q
′

k}. If
we denote by Qk(i, j) the ij-entry of Qk, i, j ∈ [1, Lk], k ∈
[0, n−m], then the non-zero entry of Qk can be determined
as

Qk(i, i+ 1) =
v2(k +m− i+ 1, n−m− k)

−v0(k +m− i+ 1, n−m− k)
if 1 ≤ i < Lk. (17)

If we denote by Q
′

k(i, j) the ij-entry of Q
′

k, i ∈ [1, Lk],
j ∈ [1, Lk+1], k ∈ [0, n −m − 1], then the non-zero entry
of Q

′

k can be determined as

Q
′

k(i, i) =
v1(k +m− i+ 1, n−m− k)

−v0(k +m− i+ 1, n−m− k)
if 1 ≤ i ≤ Lk.

(18)
Equations (17) and (18) follows after the fact that, the ith
transient state within the kth row of Markov chain shown
in Fig. 2 corresponds to state (k +m− i+ 1, n−m− k).

From (10), one can see that we can obtain the fundamental
matrix N based on Q. Please refer to [10] for the details of
derivation for matrix N.

IV. NUMERICAL RESULTS

In this section, we proceed to apply the above theoretical
framework to concrete network scenarios, so as to analyti-
cally evaluate the corresponding performance metrics, i.e.,
the average lasting time of the message propagation process
t(m,n), the mean value E{r(m,n)} of the fraction of nodes
finally receiving the message and its variance Var{r(m,n)},
and the probability distributions of the number of nodes
finally receiving the message {P (i)}, i ∈ [m,n]. Note that
we present here only the numerical results under several
network scenarios, the network performances under other
network settings can also be obtained by our framework as
well.

We summarize in Figs. 3(a), 3(b), and 3(c), respectively,
how the average lasting time of message propagation process
t(m,n) varies with network parameters of m, n, and p. As
shown in Fig. 3(a) that for each setting of n, the average
lasting time t(m,n) monotonically decreases as m increases,
which means that increasing the number of nodes initially
disseminating the message can improve the convergence
speed of the message propagation process and thus shorten
its propagation time. It is noticed that such monotonically
decreasing behavior of t(m,n) can be also observed from
Figs. 3(b) and 3(c) as we increase the network size n and
the stopping probability p. A further careful observation
of Figs. 3(a), 3(b), and 3(c), indicates that there exists a
common feature regarding the varying behaviors of t(m,n)
for all parameter settings in these three figures. Specifically,
the t(m,n) is extremely sensitive to the variations of m,

n, and p when their values are relatively small. That is,
t(m,n) drops dramatically as parameters m, n, and p are
within a small range, and becomes gradually insensitive to
their variations as they increase up.

Recall that we consider for each node an explicit proba-
bilistic stopping mechanism in the message propagation pro-
cess. To further illustrate the impact of such mechanism on
the message delivery performance, we show in Fig. 4 the re-
lationship between network parameters (m,n, p) and the ex-
pected reach E{r(m,n)} and its relative standard deviation
δ, where δ is defined as δ =

√
Var{r(m,n)}/E{r(m,n)}.

One can observe from Fig. 4(a) (resp. Fig. 4(b)) that as m
(resp. n) increases, the expected reach E{r(m,n)} mono-
tonically increases, while the δ monotonically decreases.
Such behaviors of E{r(m,n)} and δ mean that the explicit
probabilistic stopping mechanism considered in this paper
is very effective and has good scalability, since it can
stably enable the message to be distributed to a majority of
nodes (i.e., an increasing expected reach E{r(m,n)} and a
decreasing relative standard deviation δ as the network scales
up), while simultaneously conserving the transmit power and
storage buffer for each node. However, both the behaviors of
E{r(m,n)} and δ in Fig. 4(c) are totally different from that
in Figs. 4(a) and 4(b). In particular, the E{r(m,n)} (resp.
δ) monotonically decreases (resp. increases) as the stopping
probability p increases. Actually, it can be explained as
follows: as each node adopts a higher probability to stop
disseminating the message after encountering a node having
already received the message, the message has less chance
to be transmitted in the network and thus the expected reach
of the message becomes smaller.

Finally, we illustrate in Fig. 5 the probabilities of nodes
finally receiving the message, {P (i)}, i ∈ [m,n], i.e., the
probability mass function of the number of nodes that
have received the message at the completion of message
propagation process. For the setting of m = 5, n = 100,
Figs. 5(a) and 5(b) show the impacts of node inter-meeting
intensity λ and stopping probability p, respectively. One
can observe from Fig. 5(a) that the curves of all three
λ settings there coincide with each other, which means
that the number of nodes which have finally received the
message is independent of the parameter λ. Actually, it
can be mathematically proved via the DTMC embedded in
Fig. 2. From the transition rates (4), (5), and (6) derived
for each transient state, one can see that the transition
probabilities among neighboring states in the embedded
DTMC is independent of λ. Therefore, the absorbing state
the embedded DTMC will finally enter and thus the number
of nodes finally receiving the message are irrelevant to λ. As
shown in Fig. 5(b) that, as stopping probability p increases,
the curve of probability mass function becomes lower and
wider, which corresponds to a larger varying range for the
number of nodes finally receiving the message. Furthermore,
a careful observation of Figs. 5(a) and 5(b) shows that there
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Figure 3. An illustration of the relationship between the average lasting time t(m,n) and network parameters (m,n, p). (a) t(m,n) Vs. m. (b) t(m,n)
Vs. n. (c) t(m,n) Vs. p.
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(c)

Figure 4. An illustration of the expected reach E{r(m,n)} and its relative standard deviation δ, where δ =
√

Var{r(m,n)}/E{r(m,n)}. (a) E{r(m,n)}
and δ Vs. m. (b) E{r(m,n)} and δ Vs. n. (c) E{r(m,n)} and δ Vs. p.

exists a threshold value n0, below which the corresponding
probability is almost zero, i.e., {P (i) = 0|m ≤ i < n0}.
In other words, given parameters m, n, and p, at least n0

nodes will finally receive the message.

V. CONCLUSION

In this paper we have considered an explicit probabilistic
stopping mechanism for message propagation in mobile sen-
sor networks, and investigated the impact of such mechanism
on the message delivery performances. Specifically, a two-
dimensional Markov chain framework was developed to
characterize the complicated message propagation process.
Based on the framework, closed-form expressions were
further derived for the average lasting time of message
propagation process t(m,n), the expected reach E{r(m,n)}
and the relative standard deviation δ, and the probability
mass function of the number of nodes that have received
the message at the completion of message propagation pro-
cess. Finally, extensive numerical results were presented to
illustrate how these performance metrics vary with network
parameters (m,n, p, λ).

Our results show that the explicit probabilistic stopping

mechanism considered in this paper is very effective and
has good scalability, which can stably enable the message
to be distributed to a majority of nodes while simultaneously
conserving the transmit power and storage buffer for each
node. One interesting finding is that t(m,n) exhibits to be
extremely sensitive to the variations of m, n, and p when
their values are relatively small. Another finding is that given
parameters m, n, and p there accordingly exists a threshold
value n0, and the explicit probabilistic stopping mechanism
guarantees that at least n0 nodes will finally receive the
message.
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