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Abstract—In wireless sensor networks with mobile sink, mo-
bile sink traverse the sensing area and aggregate the data from
nodes near the mobile sink. In this scheme, mobile sink can
reduce the total energy consumption by dividing the network to
the multiple clusters. Since, energy consumption is proportional
to the sum of square of communication distance, dividing the
network into smaller clusters can reduce the amount of energy
required for transmission. Previous researches concluded that
increasing number of the cluster reduces energy required for
data transmission. However, these ideas do not take into account
the energy consumption due to data request message flooding
in dense networks. In this paper, we focus on the data request
flooding problem which is the massive energy consumption for
data request message in dense network. Moreover, we point out
that energy consumption of data transmission and data request
message are controlled by the number of clusters in the network.

I. INTRODUCTION
Wireless Sensor Networks (WSN) have drawn great atten-

tion for being a possible candidate for deploying ubiquitous
networks. A ubiquitous network refers to a network environ-
ment which enables access anytime, anywhere, by any device
and by anyone. Recently many applications on ubiquitous
networks have been developed such as sharing traffic conges-
tion information by using car navigation systems [1], intruder
detection [2] and environment observation [3]. To realize
these applications, information such as traffic information,
intruder information and temperature information needed to
be aggregated to a certain point.

A WSN is consisted of tens of thousand of sensor nodes,
of which each is composed of sensing and wireless commu-
nication module [4]. In WSN, these nodes communicate with
neighboring nodes and form the network automatically. The
overall information gathered by the nodes are aggregated to a
sink node. Nodes far away from the sink node have to transfer
the data in multihop fashion to the sink node. Therefore, the
intermediate nodes have to relay data. The nodes, which are
close to the sink are likely to relay more data and since relaying
data consume energy, the nodes closer to the sink are more
likely to run out of energy. Once the battery runs out, the node
can no longer sense or transmit data. This problem is called the
“energy hole problem” which lead to a short network lifetime
[5].

To solve this problem, data aggregation using mobile sink
has gained much attention. In WSN with mobile sink, the
mobile sink divides the network into some clusters. After
clustering, mobile sink traverse each cluster and aggregate the

Fig. 1. Data aggregation with a mobile sink

information generated by the nodes that belong to the cluster.
Because energy consumption is proportional to the sum of
square of communication distance, the use of mobile sink can
reduce total energy consumption by shortening the communi-
cation path. To reduce energy consumption, the trajectory of
the sink node is decided by sensor nodes’ location. Previous
researches concluded that increasing number of cluster reduces
energy consumption for data transmission. In addition, the
upper limitation of number of cluster is decided by some
extra parameters (i.e., buffer size and delay). This is because
increasing the number of cluster means smaller cluster size
and shorter data transmission path length. However, these
researches do not take into account energy consumption caused
by data request messages. Data request messages have to be
sent from the mobile sink to invoke nodes to send data. Nodes
which received data request message have to rebroadcast the
data request message to their neighboring nodes regardless of
their cluster affiliation, since such information is not available
for each node. Therefore increasing number of cluster means
the number of data request message increases. This problem
dramatically degrade the performance in the WSN where
sensor are deployed densely.

In this paper, we first present the energy minimized clus-
tering algorithm by using the Expectation-Maximization (EM)
algorithm for 2-dimensional Gaussian mixture distribution [6].
The adapted EM algorithm aims to minimize the sum of
square of wireless communication distance, because energy
consumption is proportional to square of communication dis-
tance. Moreover, we first focus on the “data request flooding
problem” to point out that too many clusters results in perfor-



mance degradation.
The reminder of this paper is organized as follows. Section

II describes the related works. Section III presents proposed
data aggregation scheme. The data request flooding problem
is described Section IV. The performance of our method is
evaluated in Section V. Finally, Section VI conclude the paper.

II. RELATED WORK
In recent literature, many studies have already focused

on data aggregation with mobile sink(s) in WSNs. Shah et
al. proposed the data aggregation scheme with mobile sink
having random walk mobility [7]. This scheme is called “Data
MULEs,” and it aims to reduce power consumption. In the
data aggregation scheme, the mobile sink node divides nodes
into grids regardless of nodes’ location, and patrols grids by
using random walk between neighboring grids. This type of
clustering which is independent to nodes’ location may result
in inefficient data aggregation. If there is no node in the cluster,
patrolling the cluster is only a waste of time. Determination of
suitable routes for mobile sink are critical to reducing energy
consumption and prolonging network lifetime.

In contrast to the random clustering algorithm, methods
of minimizing energy consumption for data transmission by
non-random clustering have been studied. Low-Energy Adap-
tive Clustering Hierarchy (LEACH) [8] is one of the most
famous clustering algorithms. In LEACH, clustering algorithm
is executed by each sensor node. Nodes exchange their own
remaining energy information, and node which has higher
remaining energy is given higher probability of being a cluster
head. Energy consumption of the each node becomes proba-
bilistic equal. However, LEACH is based on the assumption
that each node can communicate with every other nodes. In
the real network, this assumption will result in higher energy
consumption. The k-CONID [9]algorithm is a probabilistic
algorithm. Nodes exchange its random ID each other and the
node which has minimum ID within k-hop is selected as a
cluster head.

Because these distributed clustering algorithms based on
information exchange, the algorithm considers a limitation of
communication range. KAT mobility [10] is a cluster based
data aggregation scheme, which uses the K-means algorithm
for clustering, Traveling Salesman Problem (TSP) for mini-
mizing traveling time, and Directed Diffusion [11] for data
aggregation. KAT mobility aims at not only reducing energy
consumption but also at increasing the efficiency, which is the
ratio of the aggregated data volume to the consumed energy.
KAT mobility creates clusters based on the positions of the
nodes in the considered WSN. Therefore, when some nodes
become inactive due to low battery, KAT mobility can re-
evaluate the trajectory of the mobile sink node and select a
more suitable path for performing data aggregation.

Previous researches [12]–[15] consider that increasing
number of cluster reduces energy consumption for data trans-
mission because increasing number of cluster means smaller
cluster size and shorter data transmission path length. Some
researches have considered a certain limitation of number of
cluster. In [12] and [13], the limitation is maximum acceptable
latency of data aggregation. In [14] and [15] authors define
the limitation by nodes buffer size. These limitations are
realistic assumption. However, these ideas do not consider
energy consumption caused by data request messages. In this
paper, we first focus on the effect of data request message by

(a) First stage of EM algorithm (b) Second stage of EM algorithm

(c) Third stage of EM algorithm (d) Fourth stage of EM algorithm

Fig. 2. Overview of EM algorithm

increasing number of cluster.

III. DATA AGGREGATION WITH A MOBILE SINK
In this section, we explain simple clustering algorithm

which uses nodes’ location to minimize the total energy con-
sumption. In this clustering algorithm, we utilize EM algorithm
over the 2-dimentional Gaussian mixture distributions since
EM algorithm can minimize the sum of square of distance
between each node and the centroid of cluster. After clustering,
mobile sink traverse the centroids of the cluster computed
by EM algorithm. Traversal path is decided by Traveling
Salesman Problem (TSP) algorithm. At the centroids of the
cluster, mobile sink broadcast the data request message and
collect data.

A. EM-based Clustering Algorithm
In order to minimize the energy consumption in WSNs,

transmission distance is one of the most important parame-
ters because the required energy for wireless transmission is
proportional to the square of the transmission distance. The
EM algorithm includes minimizing the sum of the squares
of distances between the nodes and the cluster centroid.
Moreover, the EM algorithm groups the nodes into a certain
number of clusters to reduce energy consumption. The two-
dimensional EM algorithm is only based on an assumption that
nodes are distributed according to a 2-dimentional Gaussian
mixture distribution.

Fig. 2 shows overview of the EM algorithm. Fig. 2(a) is
the initial status of network. Every nodes do not belong to any
cluster, and centroids of clusters which represented by the cross
are randomly decided. At the first step, shown in fig.2(b), EM
algorithm calculates each node’s degree of dependence that is
referred to as responsibility. The responsibility value shows
how much a node depends on a cluster. This responsibility
value is calculated by the nodes location and centroid location
of cluster. Normally, each node depends only on one cluster.
However, it is possible for nodes to depend on more than one
clusters so that those nodes will not focus their energy in a
single cluster. After EM algorithm calculate the responsibility
value, it calculate the centroid of the cluster by using node’s
location as shown in fig. 2(c). The centroid of each cluster is



calculated to minimize the distance between each nodes which
belong to the cluster and the centroid. After the calculation of
centroids, EM algorithm recalculates each node’s responsibility
value because the centroids location changed in the previous
step.

EM algorithm can minimize the sum of squares of the
distances between nodes and cluster centroids, however, energy
consumption is proportional to the sum of square of communi-
cation distance. Communication distance is the sum of distance
between each hop from the communicating node to the cluster
centroid. Therefore, we need to adapt the EM algorithm to
minimize the sum of communication distance. The difference
of communication distance and the direct distance between
every node and centroids becomes shorter when node density
increases. Therefore, we adapt to the EM algorithm by using
Gausian mixture distribution and nodes’ density.

B. The trajectory of the mobile sink
After clustering of WSN nodes, we will determine the

actual trajectory of the mobile sink. The mobile sink traverses
through clusters and aggregates data from various nodes.
Since it is possible to increase efficiency by reducing the
traveling time, it is preferable that the mobile sink traces the
shortest path among the cluster centroids. Therefore, we use
the solution of TSP. Since TSP is an NP-hard problem, we
resort to an approximate solution of TSP as the trajectory.

C. Mobile Sink Data Collection
After arriving at the centroid, the mobile sink will broadcast

data request message to nodes, which will in turn try to send
the data collected to the mobile sink either directly or via
other nodes in a multi-hop fashion. In addition to sending the
collected data, the nodes will also rebroadcast the data request
message to their neighbor nodes.

IV. DATA REQUEST FLOODING PROBLEM
The data aggregation scheme presented in the previous

section aims to minimize energy consumption for data collec-
tion. However it still has remaining issue in determining the
appropriate number of clusters. The previous researches men-
tioned in the previous section consider that increasing number
of cluster reduces energy consumption for data transmission.
However, these researches do not take into account the energy
consumption for data transmission. Here, we point out that
optimal number of clusters can be derived in terms of power
consumption due to data request flooding problem, which is
affected by the network connectivity.

A. Definition of connectivity
To analyze correlation between energy consumption and

connectivity, we need to formulate connectivity of nodes. In
the previous literatures, connectivity, C, is often defined by
the following equation

C =

∑G
g=1 Ng(Ng − 1)

N(N − 1)
, (1)

where G is a total number of groups and N is a total number
of nodes. And Ng is a number of nodes which belong to group
g. In this paper, we define a group to be a set of nodes which
can communicate with each other directly or in multihop. This
metric takes a value between 0 and 1. When all nodes can
communicate with each other, value of connectivity is 1. If all
node are isolated, the value is 0.

(a) Low connectivity network (b) High connectivity network

Fig. 3. Data request flooding problem

B. Data request flooding problem
In WSNs with mobile sinks, sink node which arrived at the

centroid of the cluster, have to send data request message to
invoke data transmission from sensor nodes. In general, data
request message is transmitted with maximum transmission
range without considering neighboring nodes’ location and
affiliation because information on the nodes’ location and
cluster information are not available at node without employing
additional specific functionality. The nodes which received
data request message send the data to the sink nodes and
rebroadcast data request message their the neighboring nodes.
This data request message is repeatedly rebroadcasted until all
nodes have received the message. This becomes a problem,
because the network will be flood with redundant data request
message causing high energy consumption. Thus, reducing
data request transmission is also important for mobile sink
scheme.

The impact of data request flooding issues becomes signif-
icant when nodes’ density becomes larger as shown in Fig.3.
There are four sensor nodes and the sink nodes traverse the
two points, and broadcast the data request message. In the
case of Fig.3(a) where nodes can only communicate with the
nodes, which belongs to the same group. Sink node broadcasts
data request message to each node in group 1, and because
these nodes rebroadcast the data request message, these nodes
receive data request message twice. Therefore, the sum of the
transmission of data request message of both group 1 and
group 2 is 4. On the other hand, Fig.3(b) shows a situation
where nodes can communicate with all nodes because all
nodes belongs to same group, the data request message is
transferred to all nodes. Furthermore, all nodes rebroadcast
the data request message. Therefore, sum of the transmission
of data request message within group 1 is 8.

Even if the number of nodes and cluster stay the same,
the problem become more serious with higher connectivity.
Moreover, it is clearly understood that the total number of
transmitted data request messages increase when number of
cluster is increased. Because of this problem, we need to
carefully choose the number of cluster based on connectivity.

C. Effect of connectivity for data request transmission
Consider a group of nodes which has Ng nodes and Kg

centroids of cluster. Data request message is sent from every
cluster and every nodes rebroadcast it once. Therefore, total
required energy to transmit data request message is formulated
as follow

EReq =
G∑

g=1

KgNgR
2, (2)



where R is maximum transmission range of sensor node. This
equation is based on simple assumption which is required
energy for transmission is proportional to the square of data
transmission range. For simplicity, constant variables are omit-
ted. If N and Ng are sufficiently larger than 1, i.e., N ≫ 1
and Ng ≫ 1, then the connectivity, C, can be approximated
as follow

C =

∑G
g=1 Ng(Ng − 1)

N(N − 1)
+

∑G
g=1 N

2
g

N2
. (3)

Therefore, from equations, 2 and 3, Ereq is transformed
into follows.

EReq = KNR2C. (4)

This analysis says that required energy for data request trans-
mission is proportional to connectivity. Moreover, the function
is monotonically increasing function of K, which means lower
number of cluster is better for reducing energy consumed by
data request transmission.

V. PERFORMANCE EVALUATION
We conducted performance evaluation by using a clustering

simulator written by C++. In this section, we first evaluate the
clustering efficiency of each clustering algorithm. In the second
experiment, we evaluate the energy consumption caused by the
data request flooding problem.

A. Energy consumption for data transmission
In this experiment, we evaluate energy consumption for

data transmission and efficiency. The efficiency value simply
shows how much data can be aggregated per unit of energy.

Table.I shows environment of the first experiment. Sensors
are randomly deployed in a 5000 × 5000 square meters.
The nodes’ communication range are set 438.57 meters. We
measure EDat and efficiency of adapted EM algorithm scheme
described in previous section by varying the number of nodes.
The first one is data transmission energy EDatrepresented in
following equation.

EDat =
N∑

n=1

K∑
k=1

Hnk∑
h=1

γnk · l2h, (5)

where Hnk is number of hop count from nth node to kth
centroid and lh is communication distance of each hop. For
simplicity, constant variables are omitted. EDat shows how well
the clustering algorithm works. If locations of every centroids
are far away from nodes and cannot connect, EDat value is
calculated as 0. This value does not refer to energy saving,
but it is referred to clustering failure. The clustering algorithm
which do not consider connectivity sometimes causes this
failure (e.g. pure EM algorithm). Thus, we also use metric
efficiency and EDat. The efficiency value is different among
clustering algorithm, and if efficiency value is large, the energy
consumption for data transmission is also large. We use pure
EM algorithm and k-CONID as comparison. EM algorithm is
centralized and do not consider connectivity, and k-CONID is
distributed and considers connectivity. This distinct character-
istics are good for comparison.

Figure 4(a) and 4(b) are experimental results of required
energy and efficiency respectively. Figure 4(a) shows required
energy for data transmission is substantially different from

TABLE I. ENVIRONMENTS OF 1ST. EXPERIMENT

Node distribution Uniformly random
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Fig. 4. Energy consumption for data transmission and efficiency

k-CONID. The reason for this difference is based on the
difference between centralized and distributed nature of the
algorithm. The centralized algorithm can calculate a more
efficient clustering than the distributed one. Adapted EM algo-
rithm behaves similar to EM algorithm but requires less energy.
This improvement comes from the fact that adapted EM con-
siders connectivity and communication distance. Figure 4(b)
shows that pure EM algorithm is the worst clustering algorithm
when node density is low. Because pure EM algorithm do
not consider node connectivity and is a centralized algorithm,
clustering results sometimes loses its connectivity to sensor
nodes. Thus, when number of nodes is low and node density
is small, centroids of EM algorithm can connect only small
number of nodes.

B. Data request message flooding problem
In this experiment, we evaluate the effect of data request

message flooding problem. Table II shows the environment of
second experiment. We evaluate the energy consumption by
varying the connectivity, however, connectivity is calculated
after scattering nodes. We cannot set connectivity to the value
we want. Thus, we use the average results of connectivity.

Fig. 5 shows required energy for data transmission and for



TABLE II. ENVIRONMENT OF 2ND. EXPERIMENT

Number of cluster, K 5 - 50
Number of node, N 50 - 200
Communication range, R 200 - 600 [m]
Length of one side of field, L 1000 - 5000 [m]
Clustering algorithm Adapted EM algorithm
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Fig. 5. Required energy for data transmission and data request

data request message in our proposed clustering scheme in the
network where connectivity is 0.2 and 1. Connectivity 1 means
that each node can communicate with each other directly or
in multihop fashion. Therefore, the data request message from
the mobile sink is transmitted to every nodes.

This results shows that required energy for data trans-
mission proportionally decreases with increasing number of
cluster. However, the energy consumption for data request is
proportionally increases with the increasing number of clusters.
From these results, to minimize energy consumption for data
aggregation, the number of clusters should be decided by con-
sidering energy consumption for data transmission and for data
request. Moreover, the energy consumption for data request
dramatically increases in high connectivity or dense network.
This is because in the high connectivity network there is much
higher chance of nodes outside the intended cluster to overhear
the data request message that would cause the overheard nodes
to rebroadcast the message to their neighbors who in turn will
rebroadcast the message to their neighbor. This is a waste of
energy since the nodes outside the intended cluster have to
rebroadcast the data request message even when the message
is not intended for them. However, according to the result
from the first experiment, the energy consumption of data
transmission varies amongst different clustering algorithms.
Therefore the optimal number of cluster that should be used
is also decided by clustering algorithms.

VI. CONCLUSION
In this paper, we presented adapted EM clustering al-

gorithm. The simulation verify that adapted EM algorithm
scheme can increase efficient for different numbers and distri-
butions of nodes. And also simulation shows that our clustering
algorithm is the most efficienct among clustering algorithm.
In addition, we pointed out that increasing number of cluster
increases energy consumption of data request message because
of data request flooding problem. The simulation results verify
that large number of clusters reduces the energy consumption
of data transmission, but increases the energy consumption
of data request message. Moreover, energy consumption for

data request message increases dramatically in dense, highly
connected network because of data request flooding problem.
From this result, number of the cluster should be decided by
the energy consumption of data transmission and data requst
message.
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