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Abstract—A significant amount of works has been done to
model the delivery performances in Intermittently Connected
Mobile Networks (ICMNs). However, available works considered
either the two-hop relay routing or the epidemic routing, which
actually represent two extreme cases of the message delivery
process in ICMNs. In this paper, we take one step ahead and
focus on the three-hop relay routing where each message travels
at most three hops to reach the destination. Under such a scheme,
besides that the source can send a message copy to each node it
meets, a relay which receives the message directly from the source
can also replicate the message to other nodes, while a relay node
which receives the message from another relay can only forward
the message to the destination. In order to characterize the
complicated message delivery process under the three-hop relay
routing, a multidimensional Markov chain theoretical framework
is developed. Based on the Markov chain framework and block
matrix theory, closed-form expressions are further derived for the
important message delivery delay and delivery cost. Extensive
numerical results are also provided to explore the achievable
delivery performances under the three-hop relay.

I. INTRODUCTION

Intermittently Connected Mobile Networks (ICMNs) con-
sisting of sparsely distributed mobile nodes, usually suffer
from dramatic topology changes and frequent network parti-
tions [1]–[3]. Consequently, there exists no contemporaneous
end-to-end path most of the time and the traditional route
based routing schemes, such as Dynamic Source Routing
(DSR), Ad hoc On-Demand Distance Vector (AODV), etc.,
fail to function properly in such intermittently connected
environment. Instead, the store-carry-forward kind of routing
which utilizes the space-time paths among relay nodes to
achieve end-to-end delivery becomes a popular routing option
for ICMNs.

A significant amount of works has been done to model the
delivery performances for store-carry-forward routing schemes
in ICMNs. Groenevelt et al. in [4] provided closed-form ex-
pressions and also asymptotic approximations for the expected
message delivery delay of two-hop relay routing and epidemic
routing. Later, Zhang et al. in [5] proposed an Ordinary Differ-
ential Equations (ODEs) based model to study the performance
of epidemic routing, where quantitative results were obtained
for the message delivery delay and the number of message
copies sent. More recently, Markov chain based models have
also been developed to analyze the performances of two-hop
relay routing and its variants [6]–[8].

It is noticed that the two-hop relay routing and the epidemic
routing actually represent two extreme cases of the message
delivery in the ICMNs. Specifically, in the two-hop relay, a
relay node can never replicate the received message to another
node except the destination; while in the epidemic routing, a
relay node can send out a copy of the received message to any
node it meet. In this paper, we take one step ahead and focus
on the three-hop relay routing. Under such a routing scheme,
besides that the source can send a message copy to each node
it meets, a relay which receives the message directly from the
source can also replicate the message to other nodes, while a
relay node which receives the message from another relay can
only forward the message to the destination. To the best of
our knowledge, this work represents the first analytical study
of three-hop relay routing in literature.

The main contributions of this paper are summarized as
follows:

• In Section III, we first develop a multidimensional
Markov chain theoretical framework, so as to provide a
nice characterization for the complicated message deliv-
ery process under the three-hop relay routing.

• Based on the developed Markov chain theoretical frame-
work and the block matrix theory, in Section III we
further derive closed-form expressions for the important
delivery performances under the three-hop relay, like the
expected delivery delay and the expected delivery cost.

• Finally, in Section IV we provide extensive numerical
results to further analytically explore the achievable de-
livery performances under the three-hop relay routing.

II. PRELIMINARIES

A. System Models

We consider a network with n nodes moving in a square
area of side length l. The mobile nodes are sparsely distributed
in the network area and each node adopts a transmission range
r � l, so that the network is guaranteed to be disconnected
most of the time. There is no pre-existing infrastructure in the
network, and for any node pair, they can transmit to each other
only when they move into reciprocal transmission range. The
channel bandwidth is assumed to be limited and the data that
can be successfully transmitted during a contact (or meeting)
between any node pair is fixed as W bits.



Fig. 1. Illustration of three-hop relay routing for the traffic from the source
S to the destination D.

Regarding the mobility model, we assume that the n nodes
move within the square area according to the popular Random
Waypoint model (or the Random Direction model) with a
scalar velocity of v. Similar to [9], [10], we further assume that
for any node pair the occurrence of their contacts follows the
Poisson distribution. In other words, the inter-meeting times of
any two nodes, i.e., the time elapsed between their consecutive
contacts, are exponentially distributed with an inter-meeting
intensity. Actually, this assumption has been validated in [11]
and also widely adopted in literature [4], [12], [13]. Accroding
to [11], if we denote by λ the inter-meeting intensity between
a node pair, then we have

λ =
8ωrv

πl2
, (1)

where the constant ω is determined as ω = 1.368 (resp. ω =
1) for the Random Waypoint model (resp. for the Random
Direction model) [11].

B. Three-Hop Relay Routing

Distinguished from previous works [6], [7], [14], we con-
sider in this paper the three-hop relay routing. Under such a
routing scheme, besides that the source can send a message
copy to each node it meets, a relay which receives the message
directly from the source can also replicate the message to other
nodes, while a relay node which receives the message from
another relay can only forward the message to the destination.
To simplify the analysis, we assume that there is only one
source-destination pair (i.e., one traffic flow) in the network,
and denote its source and destination by S and D, respectively.
The other n−2 nodes have no local traffic to deliver and will
serve as pure relays for the traffic from S to D.

As illustrated in Fig. 1, a message M may experience at
most three phases (hops) to travel from S to D. Specifically,
in Phase 1, M is delivered from S to a relay node, say R1;
later in Phase 2, the node R1 replicates M to another node
without carrying M , say R2; finally in Phase 3, the node R2

forwards M to D when it meets D. As both S and R1 can

Fig. 2. Transition diagrams for a general transient state (i, j), 0 < i < n−2,
0 ≤ j < n− 2, i+ j < n− 2.

directly transmit M to D every time such opportunity comes
up, M travels at most three hops to reach D from S.

From Fig. 1, we can see that when operating under the
three-hop relay routing, there exist two different kinds of relay
nodes in the message delivery process from S to D, which are
defined as follows:

Tier 1 Relay: For a message M , a relay node is called as
a tier 1 relay if it receives M in Phase 1, i.e., it receives the
message M directly from the source S.

Tier 2 Relay: If a relay node receives the message M in
Phase 2 (i.e., receives M from a tier 1 relay), then it is called
a tier 2 relay.

Note that in the delivery process of M under the three-hop
relay routing, a tier 1 relay node can replicate the message
M to other nodes it meets; while a tier 2 relay node can only
forward M to D.

One can easily observe from Fig. 1 that under the three-
hop relay routing, the message delivery process from S to D

is actually very complicated. To keep the theoretical analysis
tractable, we assume that S has only a single message of size
W bits to deliver to D so that the message can be successfully
transmitted during each node contact, similar to that in [4].

III. PERFORMANCE ANALYSIS

A. A Markov Chain Model

Note that with the three-hop relay routing, the message
transmission (to a relay node or to the destination D) depends
only on the current spatial distribution of mobile nodes in
the network, i.e., being independent of previous node mobility
trajectories. Since the delivery process of a message M ends
when the node D receives M and the final number of mobile
nodes carrying M in the network is also limited, the delivery
process of M under the three-hop relay routing can be defined
by a finite-state absorbing Markov chain.

We use (A, k) to denote an absorbing state that when
D receives the message M there are already k relay nodes
carrying M in the network, 0 ≤ k ≤ n− 2. If we further use
(i, j) to denote a transient state that there are i tier 1 relay
nodes and j tier 2 relay nodes in the network, 0 < i < n− 2,
0 ≤ j < n− 2, i+ j < n− 2, then one can see that only one
of the following transitions illustrated in Fig. 2 may happen
in the next time instant.

• SR transition: Source-to-Relay transmission, i.e., S suc-
cessfully transmits a copy of M to a relay node. As shown
in Fig. 2, under such a transition case the number of tier
1 relay nodes will be increased by one and the state (i, j)
will accordingly transit to state (i+ 1, j).



• RR transition: it corresponds to the Relay-to-Relay trans-
mission where a tier 1 relay node successfully replicates
M to another node. Obviously, the RR transition will
increase the number of tier 2 relay nodes by one and the
state (i, j) will accordingly transit to state (i, j + 1).

• SD or RD transition: Source-to-Destination or Relay-to-
Destination transmission, i.e., S delivers the message M

to D or a relay node (tier 1 or tier 2) forwards M to D.
As shown in Fig. 2, under the SD or RD transition, the
state (i, j) will transit into the absorbing state (A, i+ j).

• Self-loop transition: no message transmission is con-
ducted and the state (i, j) will transit back to itself, i.e.,
neither the node D nor a relay node receives the message
M .

When the network system is in state (i, j), 0 < i < n− 2,
0 ≤ j < n − 2, i + j < n − 2, there are in total i tier 1
relay nodes, j tier 2 relay nodes and n−2− i− j relay nodes
without carrying the message M . For the transition diagram of
state (i, j) defined in Fig. 2, if we denote by υ0(i, j), υ1(i, j),
υ2(i, j), and υ3(i, j) the rates of Self-loop transition, SR
transition, RR transition, and SD or RD transition, respectively,
then we have

υ1(i, j) = (n− 2− i− j)λ, (2)

υ2(i, j) = (n− 2− i− j)iλ, (3)

υ3(i, j) = (i+ j + 1)λ, (4)

and

υ0(i, j) = −υ1(i, j)− υ2(i, j)− υ3(i, j)

=
(
i2 − (n− 2− j)i− n+ 1

)
λ. (5)

It is noticed that for a transient state (i, j) with i+j = n−2,
since all relay nodes have already received the message M ,
there is no SR transition or RR transition and thus we have
υ1(i, j) = 0 and υ2(i, j) = 0. Similarly, for the transient (0, 0)
there is no RR transition, i.e., υ2(0, 0) = 0. Combining with
the results in equations (2), (3), (4), and (5), we have that
(2), (3), (4), and (5) actually hold for all transient states (i, j),
0 ≤ i, j ≤ n− 2, i+ j ≤ n− 2.

If we integrate the transition diagrams of all transient states,
we are able to characterize the message delivery process of
three-hop relay routing with an absorbing Continuous-Time
Markov Chain (CTMC) as illustrated in Fig. 3, where Figs. 3a,
3b, and 3c each represents a partial case of the full Markov
chain. Specifically, Fig. 3a defines the case where there is no
more than one tier 2 relay node, i.e., j = 0; Fig. 3b represents
the case that the tier 1 relay nodes may deliver the message
M to at most one more relay given that there are already j

tier 2 relay nodes in the network, 1 ≤ j ≤ n − 4; Fig. 3c
shows how the node D may receive M when there are n− 3
tier 2 relay nodes.

From the CTMC shown in Fig. 3, we can see that there
are actually n− 2 rows of transient states, where the kth row
corresponds to the row of transient states (i, j) with j = k,
0 ≤ k ≤ n − 3. If we denote by Lk the number of transient

(a) Transition diagram for states (i, j) with j = 0

(b) Transition diagram for states (i, j) with 1 ≤ j ≤ n− 4

(c) Transition diagram for state (i, j) with
j = n− 3

Fig. 3. Transition diagram of the continuous-time Markov chain defined for
the three-hop relay routing.

states in the kth row, then we have

Lk =

{
n− 1 if k = 0,

n− 2− k if 1 ≤ k ≤ n− 3.
(6)

If we further denote by β the total number of transient states
in the CTMC, then

β =
1

2
(n2 − 3n+ 4). (7)

For the convenience of reference, we number these n − 2
rows of transient states sequentially as 1, 2, . . . , β in a left-
to-right and top-to-down way. For a transient state (i, j) with
sequence number t, t ∈ [1, β], without incurring any ambigu-
ity, hereafter we use notations υ0(t), υ1(t), υ2(t), and υ3(t)
interchangeably with υ0(i, j), υ1(i, j), υ2(i, j), and υ3(i, j)
to denote the rates of Self-loop transition, SR transition, RR
transition, and SD or RD transition, respectively. The n − 1
absorbing states are also labeled sequentially in a similar way
such that the absorbing state (A, k) is given a sequence number
k + 1, k ∈ [0, n− 2].

B. Expected Delivery Delay and Expected Delivery Cost

We first formally define the delivery delay and delivery cost
for a message M as follows:

Delivery Delay: The delivery delay of a message M is
defined as the time elapsed between the time instant when the
source S starts to transmit M and the time instant when the
destination D receives M .

Delivery Cost: The delivery cost of a message M is defined
as the total number of transmissions it takes M to arrive at
the destination D.



We denote by Td and Cd the delivery delay and delivery
cost of message M , respectively. Based on the Markov chain
framework developed in Section III-A, we are ready to derive
closed-form expressions for the expected delivery delay E{Td}
and the expected delivery cost E{Cd}.

According to the Markov chain theory [15], for the Discrete-
Time Markov Chain (DTMC) embedded just before the jump
times of the CTMC in Fig. 3, the one-step transition matrix
P = (P(i, j))(β+n−1)×(β+n−1) can be defined as follows:

P =

(
Q H

0 I

)
,

where I is the identity matrix of size (n − 1) × (n − 1),
Q = (Q(i, j))β×β defines the one-step transition probabil-
ities among the β transient states of the DTMC, and H =
(H(i, j))β×(n−1) defines the one-step transition probabilities
from the β transient states to the n−1 absorbing states in the
DTMC.

We denote by N = (N(i, j))β×β the fundamental matrix of
the DTMC, then according to the Markov chain theory [15],

N = (I−Q)−1. (8)

If we further denote by e the initial vector of size 1×β where
all entries equal to zero except the first entry being one, i.e.,
e = (1, 0, . . . , 0), then we have the following theorem.

Theorem 1: The expected message delivery delay E{Td}
under the three-hop relay routing can be determined as

E{Td} = −e ·N · v0, (9)

where

v0 =
( 1

υ0(1)
,

1

υ0(2)
, . . . ,

1

υ0(β)

)T
,

with υ0(t) denoting the self-loop transition rate of the tth
transient state as defined in (5), t ∈ [1, β],.

Now we proceed to derive the expected delivery cost
E{Cd}. Recall that the state (A, k) denotes that when the
node D receives the message M there are already k relay
nodes each carrying a copy of M , 0 ≤ k ≤ n − 2. Since it
takes one transmission to deliver M to a relay node or D, the
corresponding delivery cost can be determined as k+1 given
that the Markov chain gets absorbed in (A, k). Therefore, we
have the following theorem.

Theorem 2: The expected message delivery cost E{Cd}
under the three-hop relay routing can be given by

E{Cd} = e ·N ·H · c, (10)

where c = (1, 2, 3, . . . , n− 1)T .
The proofs for Theorems 1 and 2 are similar to that in [8]

and are omitted here due to space limit. Please kindly refer to
[8] for details.

Theorems 1 and 2 indicate that in order to derive the E{Td}
and E{Cd}, the only remaining issue is to derive the matrices
N and H.

C. Derivations of Matrices N and H

According to (8), we can see that in order to derive the
matrix N we need to derive the matrix Q first. Note that
there are in total n−2 rows of transient states and for the kth
row of transient states, the transitions happen either among
transient states of the kth row or from transient states of the
kth row to that of the (k+1)th row, k ∈ [0, n−4]. Therefore,
the matrix Q can be defined by the following block matrix.

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q0 Q
′

0

Q1 Q
′

1

. . .
. . .

Qk Q
′

k

. . .
. . .

Qn−4 Q
′

n−4

Qn−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (11)

where block Qk of size Lk×Lk defines the one-step transition
probabilities among transient states of the kth row in the
DTMC and block Q

′

k of size Lk ×Lk+1 defines the one-step
transition probabilities from transient states of the kth row to
that of the (k + 1)th row in the DTMC, k ∈ [0, n− 4].

Now we proceed to derive the blocks {Qk} and {Q
′

k}.
Derivation of block Qk: Let Qk(i, j) denote the ij-entry

of block Qk, i, j ∈ [1, Lk], then the non-zero ij-entry of Qk

can be defined as follows.
When 0 ≤ k < n− 3,

Qk(i, i+ 1) = −
υ1(i− a(k), k)

υ0(i− a(k), k)
, if 1 ≤ i < Lk, (12)

where

a(k) =

{
1 if k = 0,

0 if k ≥ 1.
(13)

When k = n− 3, Qn−3 = 0.
Derivation of block Q

′

k: Let Q
′

k(i, j) denote the ij-entry
of block Q

′

k, i ∈ [1, Lk], j ∈ [1, Lk+1], then the non-zero
ij-entry of Q

′

k can be defined as follows.
When 0 ≤ k ≤ n− 4,

Q
′

k(i, i−a(k)) = −
υ2(i− a(k), k)

υ0(i− a(k), k)
, if 1+a(k) ≤ i ≤ Lk−1.

(14)
Based on (8), (11), (12) and (14), the matrix N can be

derived accordingly and please refer to [8] for details.
Similarly, the matrix H can be defined as

H = (H0,H1, . . . ,Hk, . . . ,Hn−3)
T , (15)

where the block Hk of size Lk × (n− 1) corresponds to the
one-step transition probabilities from transient states in the kth
row to the n−1 absorbing states in the DTMC, 0 ≤ k ≤ n−3.

Derivation of block Hk: Let Hk(i, j) denotes the ij-entry
of block Hk, i ∈ [1, Lk], j ∈ [1, n − 1], then the non-zero
ij-entry of Hk can be defined as follows.

When 0 ≤ k ≤ n− 3,

Hk(i, i− a(k) + k+1) = −
υ3(i− a(k), k)

υ0(i− a(k), k)
, if 1 ≤ i ≤ Lk.

(16)
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(a) E{Td} vs. n
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(b) E{Cd} vs. n

Fig. 4. Expected delivery delay E{Td} and expected delivery cost E{Cd}
vs. the number of nodes n.

IV. NUMERICAL RESULTS

Based on the theoretical framework developed in Section III,
we now proceed to analytically explore the delivery perfor-
mances E{Td} and E{Cd} under the three-hop relay routing.
With the inter-meeting intensity λ (contacts / hour) fixed as
λ = {0.121, 0.104, 0.081}, we summarize in Fig. 4 how
the E{Td} and E{Cd} vary with the number of nodes n.
The E{Td} and E{Cd} under other settings of λ can also
be obtained by our theoretical framework. One can easily
observe from Fig. 4a that for all the settings of λ there, the
E{Td} drastically diminishes with n. For example, for the case
λ = 0.081, the E{Td} of n = 80 is 1.032, which is almost
0.40 times that of n = 20 (2.553). From equations (2) and (3),
one can see that the rate of the source or relay nodes delivering
out new message copy increases as n increases up. Therefore,
we have a faster message delivery speed and thus a smaller
E{Td}. A further careful observation of Fig. 4a indicates that
with the same setting of n, a bigger value of λ can also result
in a smaller E{Td}.

Fig. 4b illustrates the relationship between E{Cd} and n.
As shown in Fig. 4b, the E{Cd} increases almost linearly as n
varies from 20 to 100. Combining with the results in Fig. 4a,
we can see that the performance improvement of delivery
delay under a bigger n, actually comes with distributing out
more redundant copies for the message until delivery. It is also
interesting to notice from Fig. 4b that the E{Cd} of all three
λ settings there coincide with each other, which means that

the E{Cd} depends only on n and is actually independent of
λ. Such independence can be explained as follows: from the
absorbing Markov chain in Fig. 3, we can see that the average
delivery cost depends only on the final state in which the
Markov chain gets absorbed and the corresponding absorbing
probability. Furthermore, as shown in equations (2), (3), (4),
(5), (12), (14), and (16), all one-step transition probabilities, no
matter that from transient states to transient states or that from
transient states to absorbing states, are actually independent of
λ.

V. CONCLUSION

In this paper, we have investigated the delivery perfor-
mances of three-hop relay routing in ICMNs. Specifically, we
first developed a multidimensional absorbing Markov chain
based theoretical framework to characterize the complicated
message delivery process under the three-hop relay routing.
With the help of the Markov chain framework, we further
derived closed-form expressions for both the expected message
delivery delay E{Td} and the expected message delivery cost
E{Cd} via the theory of block matrix. Finally, extensive nu-
merical results were provided to illustrate how the E{Td} and
E{Cd} vary with the inter-meeting intensity λ and the number
of nodes n. Our results indicate that E{Cd} is independent of
λ and λ can only affect E{Td}.
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