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Abstract— Recent technological advances in electronics, sen-
sors, and communications devices have facilitated the prolifer-
ation of Unmanned Aircraft System (UAS)-aided applications.
However, the UAS-aided communications networks are yet to
receive sufficient research endeavor. In this paper, we address
one of the most important research challenges pertaining to
UAS-aided networks comprising adaptive modulation-capable
nodes, namely how to fairly maximize the energy efficiency
(throughput per energy). For the mobility pattern innate to the
UAS, we demonstrate how the adaptive modulation behaves.
Furthermore, we formulate the problem as a potential game that
is played between the UAS and the network-nodes, and prove its
stability, optimality, and convergence. Based upon the potential
game, a data collection method is envisioned to maximize the
energy efficiency with the fairness constraint. Additionally, we
analyze the Price of Anarchy (PoA) of our proposed game.
Extensive simulations exhibit the effectiveness of our proposal
under varying environments.

I. INTRODUCTION

Advances in propulsion systems, energy storage, minia-
turized payloads, carbon fiber reinforced plastic materials,
and autonomous control have facilitated the development of
Unmanned Aircraft Systems (UASs). UASs are miniature un-
manned airborne vehicles equipped with wireless transceivers,
Global Positioning System (GPS), and superior computational
capabilities. UASs can be fixed-winged or rotor-propelled. The
UASs with fixed-wings have higher speeds compared with
the rotor-propelled ones. We focus on the fixed-winged UASs
because their superior speed renders the ability to complete
missions in shorter periods of time. Hereafter, we refer to a
fixed-winged UAS as a UAS for brevity. UASs have a great
potential to forge numerous applications in many domains [1]–
[6]. The applications include polar weather monitoring [7],
providing communications in disaster struck areas [5], and
wildfire management [8]. We aim to use the UAS’ abilities to
construct an autonomous UAS-aided network, where the UAS
flies over the sensor field to collect ambient data from sensor
nodes. Those sensor nodes are deployed in various kinds of
terrains including dangerous areas that are difficult to reach
with conventional vehicles such as helicopters.

We consider a network where the UAS collects data from
sensor nodes as it flies over its annular trajectory. Since it
is expensive to equip all sensor nodes with functionality to
communicate directly with the UAS, special sensor nodes,
Cluster Heads (CHs), are deployed in the area. The remaining

sensor nodes require only capabilities to communicate with
the CHs. The mobility pattern of the UAS causes the distance
between a CH and the UAS to vary. The distance between
the CH and the UAS affects the Signal-to-Noise Ratio (SNR),
which in turn affects the Bit Error Rate (BER) of the CH
transmissions. Both SNR and BER affect the modulation
scheme. This is because modulation schemes that transmit
more bits per symbol require higher values of SNR for a given
BER requirement [9]. Moreover, if high levels of BER are
acceptable, the achievable number of bits per symbol that a
modulation scheme transmits can be increased.

Sensor nodes and CHs powered only by batteries are usually
deployed to function unattended for prolonged periods of
time [10]. This renders energy efficiency to be very important
to ensure the longevity of CHs without the need for battery
replacement, especially when they are deployed in hazardous
terrains. In such a scenario it is important to make efficient
use of the limited battery capacities. Hence, for an amount
of consumed energy, the amount of transmitted data should
be increased to the utmost. We refer to this metric as energy
efficiency. Adaptive modulation is a technology that can trans-
mit more data for the same transmission power given that the
channel conditions are favorable, i.e., SNR level is high.

For the considered scenario, the number of bits that can
be transmitted per symbol, and consequentially the energy
efficiency, defer according to which time slot is used by the
CH. As increasing the energy efficiency is of interest, the
network designer is inclined to allow CHs with higher SNR to
have priority to transmit. This inevitably results in the unfair
distribution of time slots between CHs, where the CHs that
are far away from the UAS’ position transmit less compared
to CHs that are close to the UAS’ position. Thus, we aim to
devise a method to improve the network’s energy efficiency
while considering fairness between CHs that are close to the
UAS’ position and the CHs that are faraway from the UAS’
position.

Contemporary data collection methods (similar to those
employing mobile sinks) fail to consider the challenges as-
sociated with the aforementioned energy efficiency issues in
UAS-aided networks [11]–[13]. In this paper, we propose a
game-theoretic data collection method that improves network
energy efficiency while satisfying fairness among CHs. The
contributions of this paper can be summarized as follows:



• We show how the modulation scheme is affected by the
UAS’ trajectory.

• We formulate the problem of maximizing the energy
efficiency while satisfying fairness among CHs as a game,
where each CH i is interested in increasing its individual
utility, Ui, by acting as per its Best Response (BR)
correspondence, BR(a−i).

• For the formulated game, we prove the properties of
stability, optimality, and convergence. These properties
give performance guarantees of the formulated game.

• By using the formulated game, we propose a game-
theoretic data collection method that improves the energy
efficiency while considering fairness in UAS-aided net-
works.

• We analyze the Price of Anarchy (PoA) of our proposed
data collection method.

The remainder of the paper is organized as follows. Sec-
tion II commences with a literature review. Section III gives
details on the system assumptions and definitions. In Sec-
tion IV, we propose our data collection method for UAS-aided
networks. In Section V, we analyze the PoA of our proposed
game. Section VI presents the performance evaluation of our
proposed data collection technique. We finalize this paper in
Section VII with a conclusion.

II. RELATED WORKS

In this section, we elucidate the works relevant to the UAS-
aided networks research direction, which include the inves-
tigations of UAS-aided networks, mobile sink-based Wire-
less Sensor Networks (WSNs), network partitioning known
as clustering, channel adaptive modulation techniques, and
communication network optimization based on Game Theory.

UASs have been incorporated into many applications across
many domains that include those of civilian and military [1]–
[6]. The applications include polar weather monitoring [7]
and wildfire management [8]. Daniel et al. [2] considered
using multiple UASs equipped with sensing capabilities to
sense data from hostile environments. Using the UAS’ abil-
ities for communications applications has recently attracted
much attention. Bekmezci et al. [1] surveyed communication
problems of ad hoc networks composed of multiple UASs
referred to as Flying Ad-Hoc Networks (FANETs). Freitas et
al. [3] considered using UASs as relays to link disconnected
ad hoc networks. Varakliotis et al. [5] proposed providing
communications in disaster areas with UASs equipped with
cognitive radio technology. Goddemeier et al. [6] investigated
communication-aware steering algorithms for exploration ap-
plications in UAS swarms. The considered communication-
aware steering algorithms maximize exploration coverage with
the simultaneous ability to self-optimize the communication
links among UASs and the ground base station by exploiting
controlled mobility.

Unlike the existing works on UAS-aided networks, we aim
to use the UAS’ abilities to construct an autonomous UAS-
aided network, where the UAS flies over the sensor field to
collect ambient data from ground nodes, which are in various

kinds of terrains including dangerous areas that are difficult to
reach with conventional vehicles like helicopters. Among all
the existing works on UAS-aided networks, to the best of our
knowledge, there have not been any research that exploits the
UAS’ unique abilities to collect data from nodes on the ground.
Indeed, we aim to explore how to collect data from ground
nodes while considering the unique characteristics of the UAS,
of which we consider the UAS’ inability to be stationary in the
air. Additionally, the UAS quintessentially wheels in a trajec-
tory. This constantly changes the communication distance and
the SNR between UAS and the ground nodes. Since the SNR
of transmissions is of varying levels, adaptive modulation [9],
[14] can be incorporated to capitalize on favorable SNR levels
to increase energy efficiency and throughput.

The closest proposals to the research direction of this
paper are data collection techniques for mobile sink nodes in
WSNs [11]–[13]. However, they do not consider the circular
trajectory akin to the UAS’ movement pattern and the inability
of UAS to remain stationary in air. Furthermore, they do not
exploit favorable channel conditions by incorporating adaptive
modulation. Most notable of which is the work of Shah et
al. [11], where the authors proposed a scheme in which mobile
sinks visit sensor nodes to collect data.

Equipping all nodes with the ability to communicate with
the UAS is cost prohibitive in terms of hardware and energy
consumption. Network partitioning is a suitable solution. Many
studies have been carried out that partition the network layer
into smaller components, known as clusters, most notably is
Low-Energy Adaptive Clustering Hierarchy (LEACH) and its
many variants [10]. Clusters decrease the deployment cost of
sensor nodes, since only a special subset of nodes, referred to
as CHs, need to be able to communicate with the UAS while
the remaining nodes only need to have simple communication
functionalities to communicate with the CHs.

Researches conducted in [9], [14] have explored adaptive
M-ary Quadrature Amplitude Modulation (M-QAM). Adaptive
transmission techniques can exploit the number of degrees
available for communications to improve throughput by adapt-
ing the modulation scheme according to channel conditions,
i.e., SNR levels. Without this technology the transceivers on
the CHs can only transmit at a constant number of bits per
symbol regardless of the SNR level.

Our method aims to maximize the energy efficiency of the
UAS-aided network, where CHs with different SNR levels
at different geographical locations exist. Hence, we need to
employ a method that optimizes the allocation of time slots
to CHs such that the network’s energy efficiency is at its
maximum while maintaining a particular degree of fairness.
Game Theory is a suitable solution for such a problem. Game
Theory has been applied to a wide range of research areas,
most notably of which are economic problems [15], [16].
Using the game theoretical framework to solve complex issues
has greatly attracted the attention of many researchers in the
last decade and its applicability has been abound ever since.
In particular, Game Theory has been applied to many research
issues in the context of network communications, which
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Fig. 1. Considered UAS-aided network topology.

include channel assignment in wireless mesh networks [17]
and quality of service in wireless networks [18]. Readers
unfamiliar with Game Theory concepts and its applications in
wireless communications are encouraged to refer to the works
in [15], [19] that contain fundamental results in this research
area. In this work, we employ the framework of potential
games, which have been used in the context of objective
maximization problems such as the problem investigated in
this paper.

III. SYSTEM ASSUMPTIONS AND DEFINITIONS

Fig. 1 shows the considered UAS-aided network. Each
CH is provisioned with superior hardware that allows it to
communicate with the UAS. On the other hand, a normal
sensor node is not able to communicate with the UAS, and
has to send the data that it collects to the closest CH to it.
This architecture lowers the deployment cost of the UAS-aided
network because only the CHs need to be able to communicate
with the UAS.

Sensor field: Similar to many data collection applications
of sensor nodes [20], we assume that sensor nodes sense their
surrounding environment and report the data that they have
sensed to the CH by using a low energy communications
standard such as ZigBee or Bluetooth Low Energy [21]. The
CH communicates with the UAS by using the specific time
slots assigned to it.

Mobility model: The UAS is designed to collect data from
the sensor field. It glides around the sensor field in a circular
trajectory. The UAS has varying degrees of mobility, which
allow the UAS to achieve its objective of data collection.
The UAS’ degrees of mobility (characterized by altitude (h),
speed (v), and radius (r)) are flexible [1], [22]. The degree
of mobility changes according to mission objectives that
are influenced by time limitation of mission completion, the
terrain that the sensors are deployed in, and so on.

Adaptive modulation: The CHs in the UAS-aided network
are equipped with transceivers that are capable of adaptive
modulation. We consider that the adaptive modulation scheme
can change its modulation level to one of five modes, which
include no transmit, Phase-Shift Keying (PSK), Quadrature
Phase-Shift Keying (QPSK), 16-Quadrature Amplitude Mod-
ulation (QAM), and 64-QAM. For these K-modes (n =
0, 1, ...,K−1), the modulation schemes are able to transmit a

TABLE I
SNR SWITCHING LEVELS FOR FIVE-MODE ADAPTIVE M-QAM.

SNR n Mn bn mode

γ0 ≤ γ < γ1 0 0 0 No Tx

γ1 ≤ γ < γ2 1 2 1 BPSK

γ2 ≤ γ < γ3 2 4 2 QPSK

γ3 ≤ γ < γ4 3 16 4 16-QAM

γ4 ≤ γ < γ5 4 64 6 64-QAM

different number of bits per symbol, bn, and have Mn possible
constellations.

A. System Model
The network is composed of a set of sensor nodes, CHs, and

a UAS. According to [23], the path-loss factor, which reflects
the extent of attenuation that the signal transmitted from CH
i to the UAS suffers from can be given by

Gi = ξd−ϕi , (1)

where di is the Euclidean distance between CHi and the UAS,
ϕ denotes the path-loss exponent (it takes values between 2
and 4), and ξ is a constant dependent on factors that include
receiver gain, transmitter gain, and wavelength. The received
signal suffers from Additive White Gaussian Noise (AWGN)
with a normalized one-sided power spectral density, N0. We
assume that the transmission device on each CH transmits with
the same symbol-wise average transmit power P . Moreover,
CHs can not control the transmission power, which is constant.
Also, the network has finite bandwidth B, measured in Hertz.
Hence, the network SNR can be defined as [23], [24]:

ρ =
P

N0B
. (2)

The SNR for a transmission conducted by CHi, ρCHi
, can be

given as:

ρCHi = ρGi. (3)

B. Modulation Switching Levels Model
We adopt the fixed switching scheme [9], [14] that de-

termines the switching criterion based on fixed SNR values.
In the fixed switching scheme, the assignment of the SNR
boundaries is done so that the SNR level at the boundary
satisfies the BER requirement with the modulation scheme
used in an AWGN channel. According to [9], [14] the criteria
used to find the SNR switching levels are shown in Table I.
The switching levels, γn, can be derived from the equations
developed by Alouini and Goldsmith [14]:

γ0 = 0

γ1 = [erfc−1(2BER0)]2

γn =
2

3
K0(Mn − 1);n = 2, 3, ...,K − 1

γK = +∞,

(4)

where BER0 is the target BER level, erfc−1 is the inverse
complementary error function, and K0 = − ln(5BER0). K
in our system corresponds to the value of five.



IV. DATA COLLECTION CHALLENGES AND PROPOSED
SOLUTION

The CHs and the sensor nodes power their operation by
limited battery reserves. Energy efficiency (throughput per
energy) allows for more transmissions with the limited battery
capacities. Energy efficiency is affected by the UAS’ mobility.
The reason is, as the UAS traverses the sensor field according
to its circular trajectory, the displacements between the CHs
and the UAS change, effectively the SNR of the transmissions
between the CHs and the UAS also change. When the SNR of
the transmitted signal is high, the CHs’ transmitters can adapt
the modulation scheme to allow for more bits to be transmitted
per symbol. Inversely, if the SNR of the transmitted signal
is low, the CHs adapt the modulation scheme to lower the
number of bits transmitted per symbol. Such calibration of the
number of bits per symbol (bn) regulates the BER level so that
it is within the predetermined acceptable level, i.e., BER0.
The UAS’ time slots assignment (S) should be assigned in a
way that allows for better energy efficiency of the UAS-aided
network. Assigning time slots to maximize energy efficiency
results in unfairness of the distribution of time slots among
CHs, as CHs that are close to the UAS’ position would have
a higher probability of getting the time slots. The fairness
criterion (β) should reflect on the fairness of both energy
efficiency and throughput among the CHs. Fairness between
CHs can be expressed by using the fairness index defined as:

Fairness =
(
∑
i∈(1,2,....,N)mi)

2

N
∑
i∈(1,2,....,N)m

2
i

, (5)

where N is the number of CHs in the UAS-aided network
and m denotes a metric that indicates throughput or energy
efficiency. The problem of allocating the UAS’ time slots
among CHs to maximize the networks energy efficiency such
that the fairness criterion is satisfied cannot be solved in real
time. The reason is the number of computations behind solving
this problem. Consider a hypothetical UAS-aided network that
consists of 20 CHs, where 1000 time slots need to be assigned.
Working out a slot assignment for the aforementioned prob-
lem involves computations of mammoth proportions (201000).
Game Theory can be used to solve this optimization problem
without the associated computational burden [25]. Thus, we
formulate this problem as a game in Section IV-A. Further-
more, we give proof for the performance of our formulated
game in Section IV-B. The results found in Section IV-B are
used to propose an game-theoretic method in Section IV-C.
The proposed game-theoretic method for assigning time slots
to CHs such that network energy efficiency is improved given
that the fairness criterion is satisfied.

A. Game-based Interactions

We model the CHs as players in oder to find an optimal
time slot assignment using the framework provided by Game
Theory. Each CH is considered to be an intelligent decision
maker of the game G(N,Ai, Ui). Here, N, Ai, Ui refers to the
players, their actions, and their utility functions. The players

in this game are N CHs defined as follows:

N = {CHi;∀i ∈ (1, 2, ...., N)}, (6)

where CHi denotes the CH with index i. The utility function
of CH i, Ui, can be expressed as:

Ui =
δi
ηi

;∀i ∈ (1, 2, ...., N), (7)

where δi is the amount of transmissions that CH i has
completed and ηi is the amount of energy CH i consumed.
Ui reflects the energy efficiency of CH i, and is a positive
real number. The network utility is formulated as follows:

UNetwork =
∑

i∈(1,2,....,N)

Ui. (8)

Each CH in G(N,Ai, Ui) defines a threshold, αi, which
is the farthest distance that the CH is willing to transmit.
Consequentially, αi indicates the lowest SNR that the CH i
is willing to transmit at. Hence, the actions of CH i, Ai, are
defined as:

Ai = {αi;∀i ∈ (1, 2, ...., N)}. (9)

The game profile, Ψ, is defined as the Cartesian product of
the players’ actions

Ψ = ×∀i∈(1,2,....,N)Ai
= A1 × A2 × A3 × ...× AN . (10)

Define a−i as the action set chosen by all other players
except for player i. Thus, a−i can be defined as:

a−i = {a1, ..., ai−1, ai+1, ...., aN+1}. (11)

Players will negotiate their interdependent actions to arrive
to an optimal value of UNetwork. The issues of convergence
and efficiency arise. Convergence is whether the proposed
game coverages to a steady state, a consensus between players.
Moreover, what is the efficiency of the stable solution. These
issues will be addressed in Sections IV-B. Thereafter, the
results of Section IV-B will be used to propose a game-
theoretic method in Section IV-C.

B. Stability, Optimality, and Convergence in the potential
game G(N,Ai, Ui)

Nash Equilibrium (NE) [15], [16] is an important concept
in Game Theory that is used to define stability. NE is a stable
state that occurs if players in a game act according to their
Best Response (BR) correspondences. The BR correspondence
of player i can be defined as:

Definition 1: action a∗i ∈ BR(a−i) if

Ui(a
∗
i , a−i) ≥ Ui(ai, a−i);∀ai ∈ Ai. (12)

According to the above definition, the BR correspondence
of player i is its best action given other players actions. Now,
define the action profile â as:

â = (a1, ..., aN+1). (13)



Here, â is a NE action profile if it satisfies the following
definition:

Definition 2: â is a NE action profile if

ai ∈ BR(a−i);∀i ∈ {1, 2, ...., N}. (14)
The above definition implies that no player has an incentive

to deviate from its action if other players do not change their
actions. That is to say that the game has reached a stable
state. It is worth noting that no implicit guarantee of optimal
outcome is available. However, potential games, a specific
kind of game, have useful properties that address achieving
a NE and outcome efficiency issue. A potential game has the
following properties:
• For a finite potential game, at least one pure strategy NE

exists [26].
• All NEs of the potential game are either local or global

maximizers of the utility function [26].
• Myopic one-sided learning based on best response or

better response learning methods can be applied to the
game so as to guide the game to reach the utility function
maximizers [19], [26].

Lemma 1: G(N,Ai, Ui) is a potential game.
Proof: According to [19], [26], a game is a potential

game if there exists a potential function Pot, defined as follows:

Pot(a′i, a
′
−i)− Pot(a′′i , a

′′
−i) = Ui(a

′
i, a
′
−i)− Ui(a′′i , a′′−i),

(15)

where i, a′, and a′′ are any player and any two strategies in
the game, respectively. From Eqs. (8) and (15), we can see
that G(N,Ai, Ui) satisfies the definition of a potential game,
where

Pot = UNetwork(Ψ);∀i ∈ (1, 2, ...., N). (16)

From lemma 1, we can see that G(N,Ai, Ui) is a potential
game. Based on potential games and NEs, we can guarantee
that our proposed G(N,Ai, Ui) will converge to a conscious
between players, i.e., a stable state, which is a utility function
maximizer. Better response and best response are two famous
learning techniques that guarantee convergence to a utility
maximizing NE of potential games [19], [26]. Let t be the
step number. Players acting on better response learning choose
their actions as follows:

at+1
i =

{
arand
i if (Ui(a

rand
i , arand−i ) > Ui(a

t
i, a

t
−i))

ati otherwise.
(17)

Here, each player selects a random strategy in its turn. The
player keeps the random strategy whenever it results in a better
utility than that of the previous strategy it had in its former
turn. On the other hand, if the utility resulting from the random
action results in worse utility than that of the previous action.
Players acting on best response learning choose their actions
as follows:

at+1
i = arg∀a∈Ai

maxUi(a). (18)

Here, the player chooses the action that makes its utility
maximum. Best response learning, based on Eq. (18), is
characterized with fast convergence to the function maximizer.
However, it incurs a higher computation cost compared with
that of better response learning technique, based on Eq. (17).
Yet, better response has slower convergence speed when
compared with best response. That is to say that best and better
response have contrasting features in terms of convergence
time to the utility maximizer and computational complexity.

It is worth noting that G(N,Ai, Ui) might converge to a
stable solution that is a local optimum of the utility function,
regardless of the existence of global optimum. In such an
equilibrium the network can achieve a much more desirable
outcome, i.e., that of the global optimum. Furthermore, since
this suboptimal stable solution is one possible NE and ac-
cording to the definition of NE in Definition 1, the players
have no incentive to change their actions to increase their
utility functions and hence will stay at the local optimum NE
action profile, âLO−NE . To avoid players being insnared in a
suboptimal NE, many researchers utilize the smoothed better
response learning technique [17], [25] that introduces the
factor of uncertainty to the learning process. Smoothed better
response is proved to converge with a high probability to the
global optimal equilibrium [27]. Thus, we use the smoothed
better response learning technique in G(N,Ai, Ui). A player
acting according to the smoothed better response learning
technique probabilistically chooses its actions as follows:

at+1
i =

{
arand
i with probability (ω)
ati with probability (ω − 1). (19)

Here, ω is a function of ati and arand
i defined as:

ω(arandi , ati) =
eUi(a

rand
i ,arand

−i )/ζ

eUi(arand
i ,arand

−i )/ζ + eUi(at
i,a

t
−i)/ζ

. (20)

As can be seen from Eq. (19), smoothed better response
incorporates randomness to the learning process. The player
chooses to act upon arand

i with a probability proportional to the
difference between eUi(a

rand
i ,arand

−i )/ζ and eUi(a
t
i,a

t
−i)/ζ . In case

the difference is adequately high, the player will choose the
new random action with a high probability. Inversely, if the
difference is low, the player will retain its previous action
with a high probability. However, if the difference is small,
then ω ∼= 0.5, and the player will choose either arand

i or
at
i in a predominantly random fashion. By employing such

randomness in the learning behavior, the players are able to
escape a current local optimal stable solution to eventually
reach a different stable solution.

The smoothing factor ζ is a control parameter that affects
the balance between an algorithm’s performance outcome
and the convergence speed. A significantly large value of
smoothing factor ζ results in an exhaustive action search
and slower convergence. However, a small value of ζ is
associated with restricted strategy exploration and improves
convergence of the algorithm. It is worth noting that a zero
valued smoothing factor ζ, i.e., (ζ = 0), renders players acting
under smoothed better response learning to behave precisely



Algorithm 1 Game-theoretic data collection method: CH-side
game.

begin
Receive message from the UAS that indicates the initializa-
tion of negotiation process
repeat

arand
i ← random strategy

if (ω(arandi , ati) > random number[0, 1]) then
at+1 ← arandi

else
at+1 ← ati

Transmit at+1 to the UAS
Wait for time slot assignment from the UAS
until the T time unites are finished
end

in the same manner as a players acting under better response
would behave, in which the players bound from one action
to another. Similar to [17], [25], [28], we use the concept of
temperature on simulated annealing to set the value of the
smoothing factor dynamically to be equal to ζ = 10

t2 .

C. Proposed Game-Theoretic Data Collection Method based
on G(N,Ai, Ui)

Based on G(N,Ai, Ui) formulated in Section IV-A, we
propose our game-theoretic negotiation-based algorithm for
slot assignment that converges to a global optimum NE with
a high probability. We refer to it as data collection method
for brevity. The data collection method is played between
the UAS and N CHs. The interactions of the data collection
method can be modeled as a two-stage game, and are shown
in Algorithms 1 and 2. Algorithm 1 is based on the behavior
of players in G(N,Ai, Ui). It is used by the CHs in order
to improve their own utilities by basing their interdependent
actions on the smoothed best response learning technique.
The CHs report their strategies to the UAS and in return
the UAS executes Algorithm 2 and notifies the CHs of the
slot assignment (S). Algorithm 2 entails the UAS to act as
auctioneer acting upon the better response learning technique
to create a slot assignment S that improves UNetwork such
that β criterion is satisfied. Moreover, we introduce the notion
of finalization criterion, T , which indicates the termination
of the negotiation process. The finalization criterion (T ) is
constructed to reflect any parameter of interest, which includes
the maximum number of negotiations, time limit, computation
load, or utility function thresholds. Similar to the research
in [25], we employ the maximum number of negotiations as
the finalization criterion, T . Also, L is the number of learning
steps for Algorithm 2.

Researchers have defined many metrics to quantitatively
measure an algorithm’s limitations due to resource constraints,
which include lack of information for on-line algorithms and
lack of unbounded computational resources for approximation
algorithms. PoA [29] is an important concept in game theory
that measures how the efficiency of a system degrades due

Algorithm 2 Game-theoretic data collection method: UAS-
side game.

begin
Transmit message to CHs that indicates the initialization of
negotiation process
repeat

Wait for CHs strategies
Initialize Sdecided
repeat
Srand ← random slot assignment
if Srand satisfies β then

if UNetwork(Srand) > UNetwork(Sdecided) then
Sdecided ← Srand

until L learning steps are finished
Transmit Sdecided to CHs

until the CHs do not change their strategies
end

to the greedy behavior of players in the game compared to a
non-realtime centralized algorithm.

V. PRICE OF ANARCHY ANALYSIS

As previously mentioned, G(N,Ai, Ui) is prone to be
trapped in local optimal NEs under some categories of learning
techniques. The term Price of Anarchy was first used by
Koutsoupias and Papadimitriou [29]. In the context of utility
maximization, it quantifies the efficiency of a game-theoretic
algorithm compared to a non-realtime centralized algorithm.
Thus, it can be used to indicate the ratio between the utility of
the worst possible NE to that of the non-realtime brute force
method. It is important to note that such a brute force solution
is computationally intensive and cannot be determined in real
time.

Definition 3: Price of Anarchy
let NE be the set of all possible NEs. Then

PoA =
maxΨ′∈Ψ UNetwork
mine∈NE UNetwork

. (21)

The nominator of PoA is UNetwork under the best possible
slot assignment, SmaxUNetwork

. The denominator of the PoA is
the UNetwork of the worst possible NE, which can be derived
from the following lemmas

Lemma 2: The slot assignment that is created when all
players restrict their α values to allow only for the highest
SNR transmissions (Sgreedy) is a NE.

Proof: We prove this lemma by contradiction. Assume
that Sgreedy is not a NE (contradictory to the statement of this
lemma). Then, a player can increase its utility by a value (ε)
through changing its strategy. Yet, such a move will allow for
transmissions with less SNR, which will result in a decrease
in its utility, according to Eqs. (4) and (7), or at best case
make it remain constant. Hence, this player acting on the
BR correspondence has no incentive to change its strategy
and will remain stable. Similarly, such behavior applies to all
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(b) The time slot assignment negotiation.

Fig. 2. Performance and negotiation of proposed method.

players in G(N,Ai, Ui). Thus, we contradicted our preliminary
assumption.

Lemma 3: Sgreedy renders the lowest UNetwork in any
equilibrium of G(N,Ai, Ui).

Proof: For the situation with the best value of
maxΨ′∈Ψ UNetwork, if a player restricts its α value to the
allow only for high SNR transmissions, UNetwork will have a
value less than or equal to maxΨ′∈Ψ UNetwork. Furthermore,
if all players apply the same α restriction, UNetwork will have
the lowest possible value from an NE, UNetwork−min, which
occurs from Sgreedy

Lemma 4: mine∈NE UNetwork occurs at Sgreedy
Proof: Consider that NE ⊂ Ψ, and apply lemmas 2 and 3.

The PoA of our proposed method is further evaluated in the
forthcoming section.

VI. PERFORMANCE EVALUATION

In this section, we evaluate our proposed game-theoretic
algorithm that improves the energy efficiency of the UAS-
aided network. We construct our simulation to exemplify the
UAS-aided network reaching the NE through negotiations
among players. The simulation scenario was configured using

TABLE II
SIMULATION SETTINGS.

Parameter Value

Number of CHs (N ) 50-175

Sensor field dimensions 15000 × 15000 m2

Altitude (h) 150 m

Trajectory radius (r) 5300 m

Velocity (v) 90 km/h

Symbol duration 4 µs

Time slot duration 50 ms

Target BER requirement (BER0) 10−3

Frequency 2 GHz

Bandwidth (B) 30 KHz

Transmit power (P ) 125-250 mWatts

TABLE III
POA VALUES FOR DIFFERENT N .

N 4 9

PoA 1.1 1.34

a customized simulator with the parameters summarized in Ta-
ble II. Herein, a description of these parameters is given. The
sensor field is constructed as a square field with dimensions of
15000 × 15000 m2. The UAS travels in a circular trajectory
in the center of the field, where the altitude (h), radius (r),
and velocity (v) of the trajectory are set to values reported
in [1], and are given in Table II. The symbol duration is set
similar to the value of a common wireless interface [30]. The
target BER level, BER0, is set to (BER0 = 10−3), similar to
the value adopted in [9]. The frequency is chosen to be in the
range of most wireless technologies used in practice [16], so is
the bandwidth (B). The transmission power of CHs is chosen
to be in a low range, as such settings are practical for low
power devices, which include CHs. The path loss exponent,
ϕ, is set to (ϕ = 2.5), which is in the range of values used in
common simulation settings [23], [31].

In the first part of our performance evaluation, we compare
the performance of our proposed method to that of the non-
realtime theoretical maximum. Towards this end, we construct
two grid topologies consisting of 4 and 9 CHs, with a grid step
of 800 m and 400 m, respectively. Such small topologies allow
for computation of the approximate non-realtime theoretical
maximum. The UAS travels with a speed of 30 km/h in a
trajectory that is centered at the grids center and has a radius of
150 m. We simulate our proposed data collecting method with
T set to 1000 and L is set to 30. The simulation is repeated 25
times with different seeds to calculate the average. Fig. 2(a)
shows this comparison in terms of network energy efficiency
with the fairness criterion (β = 0.2). This result shows that
our proposed method performs at a level considerably close to
that of the non-realtime theoretical maximum. Fig. 2(b) shows
the negotiation process of our proposed method to reach the
NE in the topology comprising 9 CH. As the graph shows, the
network is converging towards the utility function maximizer.
This behavior confirms the analysis derived in Section. IV-B.
Furthermore, the values given in Table III show the PoA values
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Fig. 3. The effect of CH transmission power on the proposed method.

for the two grid topologies. The results shows that the PoA of
our proposed method is small, and indicate that the method
in worst case our proposed method does not suffer much.
The second part of the performance evaluation investigates
the effect of CH transmission power on our proposal. We
constructed a random node topology of 75 CHs according to
the parameters listed in Table II and executed the simulation
for 25 different seeds with the fairness criterion (β = 0.2). It
is important to note that the fairness criterion is a lower bound
and the actual fairness may be possibly higher. Fig. 3(a) shows
the performance of the proposed data collection method in
terms of network energy efficiency and aggregate throughput
for different values of CH transmission power. The curve
aggregate throughput shows aggregate throughput for one UAS
revolution. The plot shows that for the chosen parameters, the
network energy efficiency is inversely proportional to the CH
transmission power. This behavior is explained by the fact that
increasing the transmission power increases the denominator
of the CH’s utilities by, Eq. (7), twofolds while the increase of
nominator of the CH’s utilities, aggregate throughput, is not
as much. It is worth noting that although the increase of SNR
that allows for higher modulation levels is dependent on both
the transmission power and the path loss, i.e., Eq. (1). This
relationship is demonstrated in the plot aggregate throughput,
which shows the increase of aggregate throughput with respect
to CH transmission power. Fig. 3(b) shows the performance of
the proposed method in terms of fairness of both throughput
and energy efficiency with different values of CH transmission
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Fig. 4. The effect of the number of CHs on the proposed method.

power, respectively. The plots shows that the fairness in terms
of energy efficiency is sustained for the simulated values
of CH transmission power. As previously noted, the actual
fairness is more than value specified by the fairness criterion.
Furthermore, the figure shows a similar behavior of aggregate
throughput in terms of performance being significantly larger
than the control parameter. Finally, we investigate how our
proposed method performs under different numbers of CHs.
Fig. 4(a) shows the network energy efficiency and aggregate
throughput for different topology sizes. The graph shows
the increase of network energy efficiency with the increase
of number of CHs. This behavior is predictable from the
definition of network energy efficiency in Eq. (8). Also,
the figure shows that the aggregate throughput has a slight
increase. Moreover, Fig. 4(b) shows the fairness index of both
energy efficiency and aggregate throughput. It can be seen
that the proposed method can sustain fairness regardless of
the number of CHs.

In conclusion, the simulation results show that our proposed
game-theoretic data collection method is a promising method
for improving network energy efficiency while ensuring fair-
ness for UAS-aided networks.

VII. CONCLUSION

In this paper, we proposed a method to improve energy
efficiency while ensuring fairness for UAS-aided networks
comprising adaptive modulation capable nodes. Additionally,
for the mobility pattern of UASs, we showed how adaptive



modulation behaves. We formulated the problem as a potential
game, in addition to proving the properties of the game that
guarantee the efficiency of the obtained solution, i.e., stability,
optimality, and convergence. A game-theoretic data collection
method was proposed based on the formulated game that
improves the energy efficiency while taking into consideration
the fairness in UAS-aided networks. Moreover, we analyzed
the PoA of our proposed data collection method. Finally,
extensive simulations were conducted to validate that the
proposed game-theoretic method can provide near optimal per-
formance in terms of network energy efficiency. In conclusion,
our proposed method can significantly improve the network
performance in terms of energy efficiency. For our future work
we aim to explore the issues associated with multiple UAS-
aided networks.
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