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Abstract—Reference Point Group Mobility (RPGM) has been a
practical mobility model used to efficiently capture the potential
correlation among mobile nodes in many important applications.
In this paper, we explore the throughput-delay tradeoff in a
mobile ad hoc network (MANET) operating under the RPGM
model and also a general setting of node moving speed. In par-
ticular, we consider a MANET with unit area and n nodes being
divided evenly into Θ(nα) groups, α ∈ [0, 1], where the center of
each group moves according to a random direction model with
speed no more than υ ∈ [0, 1]. We determine the regions of per
node throughput, average delay and their tradeoffs that can be
achieved (in order sense) in such a network. For the regime of
υ = 0, we first prove that the per node throughput capacity is
Θ(n−α/2), and then develop a routing scheme to achieve this
capacity, resulting an average delay of Θ(max{n1/2, n1−α}) for
any α ∈ [0, 1]. Regarding the regime of υ > 0, we prove that the
per node throughput capacity there can be improved to Θ(1),
which is achievable by adopting a new routing scheme with an
average delay of Θ(max{n1−α, nα/2/υ}) for υ = o(1) and Θ(n)
for υ = Θ(1). The results in this paper help us to have a deep
understanding on the fundamental performance scaling laws and
also enable an efficient throughput-delay tradeoff to be achieved
in MANETs with correlated mobility.

I. INTRODUCTION

Mobile ad hoc networks (MANETs) are highly promising
to provide communication support in many important applica-
tions like disaster relief, military troop communication, last-
mile internet service, etc. The capacity theory for MANETs,
a theory defining the maximum rates achievable between
all node pairs, is of fundamental importance and serves as
the instruction guideline for the design, development and
commercialization of such networks [1], [2].
The available studies on capacity and related delay per-

formance in MANETs mainly focus on network scenarios
where mobile nodes are independent from each other and
they can visit all network area in an uniform way (please
refer to Related Works in the later part of this section). It
is notable, however, that in many important scenarios like
soldier movement in battlefield, large scale disaster recovery,
movement of attendee groups in exhibitions, etc., nodes there
not only exhibit strong correlation but also move only in some
restricted areas. Reference Point Group Mobility (RPGM)
has been a practical mobility model proposed for efficiently
capturing the potential correlation among mobile nodes in

lots of important scenarios [3]. Thus, a thorough study on
MANET capacity and related delay performance under the
RPGM model is critical for the applications of MANETs in
scenarios with correlated node mobility.
In this paper, we explore the throughput capacity, in particu-

lar the throughput-delay tradeoff, in MANETs with correlated
node mobility defined by RPGM and also a general setting
of node moving speed. Specifically, we consider a MANET
with unit area and n nodes being evenly divided into Θ(nα)
groups, α ∈ [0, 1]. At any time slot, all nodes belonging to a
group are constrained to reside concurrently within a disk area
of radius R associated with the group. Each group center (i.e.,
the central point of the disk area associated with the group)
moves according to a random direction mobility model [4]
with speed no more than υ ∈ [0, 1].
The main results of this paper are summarized as follows.
1) In the regime of υ = 0, all group centers are static and

the disk area associated with each group remains unchanged
over the time. Nodes belonging to a group can only move
within a limited region of the network. Therefore, the regime
of υ = 0 represents a special mobile network where node
movements are not only correlated but also restricted. For
this regime, we first prove that the per node throughput is
upper bounded by O

(
n−

α+1
2 /r

)
for any transmission range

r = Ω(1/
√
n) and r = O(n−α/2). We further propose a

new routing scheme for this regime and then use it to derive
an achievable throughput lower bound Ω

(
n−

α+2
2 /r2

)
, which

comes with an average delay of Θ
(
max

{
1
r ,

n−α

r2

})
. Based

on these results, we finally show that the per node throughput
capacity in this regime is determined as Θ(n−α/2) for any
α ∈ [0, 1], and more importantly, our new routing scheme
can actually achieve this throughput capacity at the cost of
introducing a Θ(max{n1/2, n1−α}) average delay.
2) In the regime of υ > 0, each group center moves across

the network at a speed uniformly selected from [0, υ] in each
time slot. We first prove that the per node throughput of
this regime is upper bounded by O

(
n−1/2/r

)
for any r =

Ω(1/
√
n) and r = O(n−α/2). Another new routing scheme

is then proposed to derive an achievable throughput lower
bound Ω

(
n−1/r2

)
for this regime, resulting an average delay

Θ
(
max

{
n−α

r2 , nα/2

υ

})
for υ = o(1) and Θ

(
1
r2

)
for υ = Θ(1).

Finally, we prove that the per node throughput capacity for this
regime is Θ(1), and our second routing scheme can achieve978-1-4799-3360-0/14/$31.00 c© 2014 IEEE
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this capacity with an average delay Θ(max{n1−α, nα/2/υ})
for υ = o(1) and Θ(n) for υ = Θ(1).

Related Works: Since the seminal work of Grossglauser
and Tse [5], a significant amount of works have been done
to understand the fundamental capacity in mobile ad hoc
networks. The authors in [5] showed that by introducing
i.i.d. mobility to the network, the per node throughput can
be significantly improved to Θ(1), as compared with the
Θ( 1√

n logn
) throughput reported in [6]. Following this line,

it was further proved that Θ(1) per node throughput can also
be achieved under other mobility models, like random walk
model [7], Brownian motion model [8] and uniform mobility
model [9].

In addition to the basic capacity study, the throughput-
delay tradeoff issue in MANETs has also been extensively
explored recently. Gamal et al. showed that to achieve a Θ(1)
throughput, the average delay will be Θ(n log n) under random
walk model [7] and will be O(

√
n/υ(n)) under Brownian

motion with υ(n) node velocity [8]. Neely et al. [10] proved
that we always have delay/capacity ≥ O(n) under i.i.d.
model. All above studies mainly focus on MANETs with
independent and uniform mobility process, where nodes are
independent from each other and they visit network area in
an uniform way. Some works have already considered the
restricted node mobility [11]–[13]. However, the node mobility
process there was still assumed to be independent from each
other, and thus they can not reflect the correlation among
nodes.

To the best of our knowledge, the work most related to
ours is [14], [15]. Li et al. [14] considered a network which
is evenly divided into n2α cells and each cell is further
evenly divided into squares of area n−2β , where a node
moves according to random walk model only within the cell
it was initially distributed in. The authors showed the possible
tradeoffs between throughput and delay by controlling the
mobility pattern (α, β). Ciullo et al. [15] considered a network
where nodes are divided into groups. All nodes of a group
have to reside in the cluster-region associated with the group,
and each group center moves according to i.i.d. model in
the network area. These two works actually represent two
extreme cases in real-world networks, where the moving speed
of each group center is either 0 [14] or infinite [15]. We have
a gap here, i.e., what is the throughput-delay tradeoff under
correlated mobility with a general setting of node moving
speed? It is also noticed that only the maximum throughput
and the minimum delivery delay were reported in [15], while
in [14] the throughput-delay tradeoff was presented without
exploring the important throughput capacity.

The rest of this paper is organized as follows. Section II
introduces system models and definitions, and Section III
introduces the scheduling scheme and some related results. We
analyze the throughput-delay tradeoffs for the υ = 0 regime
and the υ > 0 regime in Sections IV and V, respectively.
Finally, we conclude this paper in Section VI.

II. SYSTEM MODELS AND DEFINITIONS
A. Network Model
We consider a unit torus network with n mobile nodes,

which are evenly divided into m = Θ(nα) groups, α ∈ [0, 1].
Time is divided into slots of equal duration for packetized
transmission. We assume in any time slot all nodes of one
group are constrained to stay within the same portion of
network area, i.e., a group region, which is defined as a disk
area with radius R. In the following we refer to “the central
point of a group region” as “group center”. For a node i, we
use G(i) to denote the group that i belongs to, i.e., i ∈ G(i).
To exclusively explore and thus clearly illustrate the impact

of correlated mobility on throughput and delay performance,
we maintain an average node density n in each group region.
As each group contains Θ(n/nα) = Θ(n1−α) nodes, then we
have R = Θ(

√
n1−α · n−1) = Θ(n−α/2).

B. Correlated Mobility Model
The Reference Point Group Mobility (RPGM) model intro-

duced in [3] is adopted here to model the correlated mobility
of nodes in a group. We assume that the group center follows
the random direction mobility model [4], where each group
center moves across the network with a speed and a direction
uniformly selected from [0, υ] and [0, 2π), respectively. All
group centers are initially uniformly distributed, and there
exists no correlation among the movements of different group
centers.
During each time slot, once the position of a group center is

determined, all nodes belonging to the group will concurrently
move into the disk area centered at the group center. Notice
that under most settings (except for the case α = 0), all nodes
belonging to a group have to reside in a diminishing disk
area of Θ(n−α) during each time slot. Thus, we assume that
each node moves within its group region according to the i.i.d.
mobility model [10].

C. Interference Model
We employ the Protocol Model introduced in [6], [8] as the

interference model. Suppose that node i is transmitting to node
j at a time slot. To ensure successful data reception at j, for
any other simultaneous transmitting node k, we should have
d(i, j) ≤ r and d(k, j) ≥ (1 +Δ)d(i, j). Here d(i, j) denotes
the distance between i and j, r is the transmission range
adopted by each node, and Δ > 0 is a protocol specified guard
factor. We consider a single channel with limited capacity W
bits per time slot, and we do not consider the techniques of
multi-user reception or network coding.

D. Traffic Model
We assume that there are n distinct unicast flows. Without

loss of generality, the source-destination pairs of these n flows
are defined as 1 → 2, 2 → 3, . . ., (n − 1) → n, n → 1;
so that node i generates traffic destined for node i + 1 for
i = 1, . . . , n−1 and node n generates traffic destined for node
1. The traffic generated at each source node is assumed to have
an average input rate λ(n) bits per time slot. We assume the
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traffic generation process at each node is independent of the
mobility process. Besides, there is no lifetime limit on each
packet or buffer limit in each node. Therefore, a node could
carry a packet for a long time, until it delivers the packet to
the destination or to another node.

E. Definitions and Notations

Throughput Capacity: We say throughput λ(n) is feasible
if there exists a spatial and temporal scheduling scheme, such
that the source can send data to the destination at an average
rate of λ(n) packets per time slot, without causing the queue
length to grow to infinity as the time goes to infinity. The
per node throughput capacity is then defined as the maximum
feasible input rate λ(n).
Average Delay: Similar to [16], the delay of a packet

is defined as the time it takes for the packet to reach its
destination after it leaves its source, which depends heavily
on node mobility. The average delay D(n) is then obtained
by averaging over all packets received by the network as time
goes to infinity.
Notations: Given two functions f(n) ≥ 0 and g(n) ≥ 0,

i) f(n) = O(g(n)) means that there exist a positive constant
c and an integer N such that f(n) ≤ cg(n) for all n > N ;
ii) f(n) = o(g(n)) means that limn→∞ f(n)/g(n) = 0; iii)
f(n) = Ω(g(n)) means that g(n) = O(f(n)); iv) f(n) =
ω(g(n)) means that g(n) = o(f(n)); v) f(n) = Θ(g(n))
means that f(n) = O(g(n)) and also f(n) = Ω(g(n)).

III. TDMA SCHEDULING AND SOME BASIC RESULTS

This section introduces a cell partition based time division
multiple access (TDMA) scheme [7], [14] and some related
basic results, which will help us to derive the throughput lower
bounds and also average delay in Sections IV and V.
As illustrated in Fig. 1 that based on the TDMA scheme, the

unit torus is evenly divided into square cells with side length
a each. We assume a node in a cell can only transmit to nodes
in the same cell or eight adjacent cells, then the transmission
range can be accordingly determined as r =

√
8a.

For a node group G, we denote by Cg the set of cells that are
fully or partially covered by the group region associated with
G. After analyzing the geometry of cells in the group region,
we can actually divide all cells of Cg into the following groups:
• Border Cell: A cell in Cg is called a border cell if a node
(belonging to group G) in this cell can transmit to nodes
belonging to other groups.

• Inner Cell: Otherwise, if a node in this cell can only
transmit to nodes belonging to the same group, i.e., group
G, the cell is called inner cell.

Now we present some basic results regarding the distribu-
tion of nodes in the cell partitioned torus.
Lemma 1: If we denote by PE the probability that a cell

has at least one node, then as n→∞, we have PE → 1 with
a = ω( 1√

n
), and PE → 1−e−c20 with a = c0√

n
(c0 is a positive

constant).

Fig. 1. Illustration of the cell partition based TDMA scheme. The unit torus
is equally divided into square cells with side length a and nodes in all shaded
cells can transmit simultaneously without interfering with each other.

Lemma 2: If a transmitter-receiver pair can always be found
for a cell, then each cell can transmit W bits at most every
(2 + �(1 + Δ)

√
8	)2 time slots.

Lemma 3: If we denote by PI the probability that a trans-
mitter in an active inner cell can transmit to a node belonging
to the same group, then as n → ∞, we have PI ≥ 1 − e−9

for any a = Ω( 1√
n
) and a = O(R).

Lemma 4: If we denote by PB the probability that a trans-
mitter in an active border cell can transmit to a node belonging
to another group, then as n→∞, we have PB ≥ 1− e−9 for
any a = Ω( 1√

n
) and a = O(R).

Please refer to [17] for proofs of above lemmas. Based on
the results of Lemmas 1, 3 and 4 and also notice that r =

√
8a,

we set r = Ω( 1√
n
) and r = O(R) in the following analysis.

IV. REGIME OF υ = 0

With the setting υ = 0, all group centers are static and the
group region associated with each group remains unchanged
over the time. Therefore, a node can only move within its
group region during all time slots. Analysis under this scenario
is important, because it helps us understand the throughput and
delay performance for situations where nodes’ mobility is not
only correlated but also restricted within a limited area.

A. Throughput Region and Throughput Capacity
We first provide an upper bound on throughput, and then

propose a routing scheme and use it to derive a lower bound
on throughput, such that the throughout region and throughput
capacity can be determined.
Consider a large enough time interval [0, T ], and the total

number of data bits that can be transmitted end-to-end in this
interval is then nλ(n)T . Let h(b) be the number of hops taken
by bit b, 1 ≤ b ≤ nλ(n)T , let l(b, h) be the travel distance
of bit b in hop h, and let L̄ be the accumulated per bit travel
distance averaged over all end-to-end transmitted data bits.
Then we have

nλ(n)T∑
b=1

h(b)∑
h=1

l(b, h) = nλ(n)T L̄ (1)
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Note that for a source-destination pair, a bit will take the
shortest travel distance if it is transmitted just along the line
directly connecting the centers of these two groups where the
source-destination pair reside. As each transmission takes a
travel distance c1a (1 ≤ c1 ≤

√
8), then we have

L̄ ≥ c2
2R

· c1a (2)

where c2 = Θ(1) is the sample mean of the line connecting
the centers of these two groups where a source-destination pair
reside. Substituting (2) into (1),

nλ(n)T∑
b=1

h(b)∑
h=1

l(b, h) ≥ nλ(n)T · c1c2a
2R

(3)

Suppose nodes i and k are transmitting to nodes j and l,
respectively. According to the Protocol interference model,
the following inequalities must hold so as to guarantee the
successful transmissions.

d(k, j) ≥ (1 + Δ)d(i, j)

d(i, l) ≥ (1 + Δ)d(k, l)

d(l, j) ≥ d(i, l)− d(i, j)

d(j, l) ≥ d(k, j)− d(k, l)

Adding up these four inequalities, we have

d(j, l) ≥ Δ

2
(d(i, j) + d(k, l)). (4)

(4) implies that for all simultaneous transmissions, disks which
are placed around each receiver of radius Δ

2 times the travel
distance of each transmission, must be disjoint from each other
under the Protocol interference model. For each receiver, at
least 1/4 of its associated disk must lie in the unit torus, thus

nλ(n)T∑
b=1

h(b)∑
h=1

π

4

(Δ · l(b, h)
2

)2

≤WT (5)

From Cauchy-Schwarz inequality, we have( nλ(n)T∑
b=1

h(b)∑
h=1

l(b, h)

)2

≤
nλ(n)T∑
b=1

h(b)∑
h=1

(l(b, h))2 ·
nλ(n)T∑
b=1

h(b)∑
h=1

12

≤
nλ(n)T∑
b=1

h(b)∑
h=1

(l(b, h))2 · nWT

2
(6)

≤ 8nW 2T 2

πΔ2
(7)

where (6) follows because
∑nλ(n)T

b=1 h(b) ≤ nWT
2 and (7)

follows because of (5).
Combining (3) with (7), an upper bound on per node

throughput λ(n) is then determined as

λ(n) ≤
√

32W 2R2

c21c
2
2πΔ

2na2
= O

(n−α+1
2

r

)
(8)

We further propose the following multi-hop routing scheme
to derive an achievable lower bound on λ(n).

Fig. 2. Illustration of Scheme 1 for the υ = 0 regime. A packet is transmitted
from the source S to the destination D via multiple intermediate relay groups.

Scheme 1 for the υ = 0 regime: For a time slot and a
transmitter i ∈ G(i) in an active cell, say cell C:
Case 1: If C is an inner cell, a receiver j belonging to the

same group, i.e., G(j) = G(i), is randomly selected from the
one-hop neighbors of i. Node i randomly chooses one of the
following operations with equal probability.
• Node i delivers a packet which is locally generated at i
to node j. Node j will act as a relay for this packet and
forward it later to another group.

• Node i forwards a packet which is destined for node j
to j. If no such packet exist, i remains idle.

Case 2: If C is a border cell, a receiver j belonging to
another group, i.e., G(j) 
= G(i), is randomly selected from
the one-hop neighbors of i. Node i randomly chooses one of
the following operations with equal probability.
• Node i forwards a packet which is destined for a group
other than G(i) and G(j) to node j.

• Node i forwards a packet which is destined for group
G(j) to node j. If i carries a packet destined for j, i will
forward the packet directly to j.

Fig. 2 illustrates an example of Scheme 1, where a packet is
transmitted from the source S to the destinationD via multiple
intermediate relay groups. Note that under Scheme 1, after a
packet leaves its source there will be only one single node
carrying the packet at any time slot.
Based on Scheme 1, we are now able to derive an efficient

lower bound for λ(n). Consider a time slot and let CI and
CB denote the set of inner cells and the set of border cells,
respectively. From Scheme 1 we know that

W · PE

(2 + �(1 + Δ)
√
8	)2

(∑
|CI |

PI +
∑
|CB |

PB

)
≤ nλ(n)

( c2
2R

+2
)
(9)

where the left-hand side is the average number of data bits
that can be transmitted in the network per time slot based
on Scheme 1, and the right-hand side denotes the necessary
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number of data bits that should be transmitted per time slot
in order for Scheme 1 to achieve the throughput λ(n).
Together with the fact that in any time slot

|CI |+ |CB | = Θ
( 1

a2

)
, (10)

an efficient lower bound on throughput λ(n) is given by

λ(n) ≥ c3W/a2

n( c2
2R + 2)

= Ω
(n−α+2

2

r2

)
(11)

It is notable that a per node throughput of λ(n) =

Θ(n−
α+2
2 /r2) is actually achievable by Scheme 1. From the

upper bound (8) and the lower bound (11), we can see that

n−
α+1
2 /r

n−
α+2
2 /r2

=
√
n · r = Ω(1)

This equation indicates that the order of upper bound in (8) is
always no smaller than that of the lower bound in (11). Thus,
the two bounds (8) and (11) help us to determine a throughput
region as summarized in the following theorem.
Theorem 1: A region of per node throughput in the υ = 0

regime is

λ(n) =

⎧⎨
⎩
O
(

n−
α+1
2

r

)
Ω
(

n−
α+2
2

r2

)
It is interesting to observe from Theorem 1 that the upper

bound and the lower bound on λ(n) actually converge to
Θ(n−α/2) when setting r = Θ( 1√

n
), which indicates that the

per node throughput capacity for the regime of υ = 0 is just
λ(n) = Θ(n−α/2), α ∈ [0, 1].
Corollary 1: The per node throughput capacity in the υ = 0

regime is
λ(n) = Θ(n−α/2)

Furthermore, such capacity can be achieved by Scheme 1 with
the setting of r = Θ(1/

√
n).

B. Delay Analysis
The above results indicate clearly that the proposed

Scheme 1 is efficient in the sense that it is actually throughput
capacity achievable. This section further provides an analysis
on the delay performance of Scheme 1, such that a flexible
throughput-delay tradeoff could be examined.
As shown in Fig. 2 a packet may take multi-hop transmis-

sions to travel from the source to the destination. As indicated
in [15], [16] that for a packet at any hop, contention with other
packets does not change the scaling order of the total delay
with respect to its average service time. Therefore, we neglect
the queueing delay and focus only on the average service time
at each hop in the following analysis.
One can observe from Fig. 2 that the delivery process of a

packet can be actually divided into three parts: in the source
group, among relay groups and in the destination group. Let
TS denote the time it takes for the source to deliver the packet
to a relay node in the source group, let TR denote the time it
takes for a relay to forward the packet to another relay node,

and let TD denote the time it takes for a relay in the destination
group to forward the packet to the destination.
To deliver the packet to a relay, the source needs to be in an

inner cell of its group region. The probability that the source is
in an inner cell during each time slot can be approximated by
p0 = (R−a)2

R2 = 1− 2a
R + a2

R2 . Since a = r/
√
8 and r = O(R),

we have at least a constant p0. From Lemma 3, we get

E{TS} = 2

p0PI
= Θ(1)

Similarly, during each time slot the probability that a relay
carrying the packet is in a border cell can be approximated by
p1 = 1−p0 = 2a

R − a2

R2 . Accordingly, the average time it takes
for the relay to forward the packet to another relay node is

E{TR} = 2

p1PB
= Θ

(R
a

)
Finally, in order for the last relay to forward the packet to

its destination, the relay node needs to be in an inner cell and
the destination needs to be in the transmission range of the
relay node. Thus, we have

E{TD} = 2R2

p0r2
= Θ

(R2

r2

)
Recall that the sample mean of the line connecting the

two group centers of a source-destination pair is denoted by
constant c2, so the average number of transmissions for the
packet to be forwarded among relay nodes is given by c2

2R .
Thus, the average delay D(n) can be determined as

D(n) = E{TS}+ c2
2R

E{TR}+ E{TD}

= Θ(1) +
c2
2R

Θ
(R
a

)
+Θ

(R2

r2

)
= Θ

(
max

{1

r
,
n−α

r2

})
(12)

Theorem 2: The average delay of Scheme 1 in the υ = 0
regime is

D(n) = Θ
(
max

{1

r
,
n−α

r2

})
From Theorem 2 and Corollary 1, one can see that when

Scheme 1 achieves the per node throughput capacity λ(n) =
Θ(n−α/2) with setting r = Θ( 1√

n
), the corresponding average

delay becomes D(n) = Θ(max{n1/2, n1−α}). Therefore, we
have the following corollary.
Corollary 2: The proposed Scheme 1 achieves the per node

throughput capacity λ(n) = Θ(n−α/2) in the υ = 0 regime,
resulting in an average delay

D(n) = Θ(max{n1/2, n1−α})
C. Discussions
We summarize in Fig. 3 our results developed for the υ = 0

regime. Fig. 3a illustrates the achievable throughput region by
varying the transmission range r from Ω(1/

√
n) to O(n−α/2).

One can easily observe from Fig. 3a that, the throughput upper
bound and lower bound scale as Θ(n−α/2) and Θ(nα/2−1),
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(a) λ(n) vs. α (b) D(n) vs. α (c) D(n)/λ(n) vs. α

Fig. 3. Throughput-delay tradeoff under the correlated mobility for the υ = 0 regime.

respectively. Fig. 3b illustrates the delay region, in which the
delay lower bound scales as Θ(nα/2), while the delay upper
bound scales as Θ(n1−α) when α ∈ [0, 0.5] and remains
as Θ(n1/2) when α ∈ [0.5, 1]. Fig. 3c shows that it is
possible to achieve a delay-throughput tradeoff much better
than the delay/capacity = O(n) tradeoff reported in [7], [14],
[18]. Specifically, the delay-throughput tradeoff is between
Θ(n1−α/2) and Θ(n) when α ∈ [0, 0.5] and is between
Θ(n(α+1)/2) and Θ(n) when α ∈ [0.5, 1].
Here we provide some further discussions on the throughput

and delay under some extreme scenarios.
Scenario I: α = 0, the considered network just corre-

sponds to a network under the i.i.d. mobility [5], [10]. When
r = Θ(1/

√
n), from Theorems 1 and 2 we know that the

throughput capacity and average delay are reported as Θ(1)
and Θ(n), respectively, which are consistent with that reported
in [5], [10]. When r = Θ(1), the transmission range can
almost cover the whole network area so there are only Θ(1)
simultaneous transmissions during each time slot. As Figs. 3a
and 3b indicate that in this case a per node throughput of
Θ(1/n) and an average delay of Θ(1) will be achieved.
Scenario II: α = 1, the considered network corresponds

to a special mobile network where nodes are evenly divided
into Θ(n) groups, each group containing Θ(1) nodes within
a disk area of Θ(1/n). By adopting a transmission range r =
Θ(n−1/2), we obtain λ(n) = Θ(1/

√
n) and D(n) = Θ(

√
n)

as shown in Figs. 3a and 3b, which is similar to that established
in [14], [19]. It is noticed that the delay-throughput tradeoff
D(n)/λ(n) = Θ(n) achieved for λ(n) = Θ(1/

√
n) in such

mobile network, actually extends the results in [18], which
also considered the case of constant-size packets and showed
that the D(n)/λ(n) = Θ(n) tradeoff can only be achieved for
λ(n) = O(1/

√
n log n) there.

V. REGIME OF υ > 0

In the υ > 0 regime, each group center moves in the
network area at a speed and a direction uniformly selected
from [0, υ] and [0, 2π) in each time slot, respectively. Nodes
belonging to a group can only move within the disk area
centered at their group center during each time slot.

A. Throughput Region and Throughput Capacity
Similar to the case of υ = 0, here we first derive an upper

bound for the per node throughput λ(n), and then propose a
new routing scheme and use it to derive a lower bound on
λ(n), such that the throughout region and throughput capacity
for the υ > 0 regime can be determined.
Recall that L̄ denotes the accumulated per bit travel distance

averaged over all end-to-end transmitted data bits in a large
enough interval [0, T ], h(b) denotes the total number of hops
taken by bit b, and l(b, h) denotes the travel distance of bit b
in hop h. Since each data bit takes at least a constant number
of hops, say c4, to travel from the source to the destination,

L̄ ≥ c4r

From (1), then we have
nλ(n)T∑
b=1

h(b)∑
h=1

l(b, h) ≥ c4nλ(n)Tr (13)

Notice that node mobility process is independent of data
transmissions, thus (4), (5) and (7) also hold for the υ > 0
regime. Together with (13), an upper bound on λ(n) can then
be determined as

λ(n) ≤
√

8W 2

πΔ2c24nr
2
= O

(n−1/2

r

)
(14)

Now we proceed to derive an achievable lower bound on
λ(n). Regarding the scheduling of simultaneous transmissions
in each time slot, we still adopt the cell partition based
TDMA scheme introduced in Section III. It is easy to see
that Lemmas 1, 2, 3 and 4 also hold for the υ > 0 regime.
About the routing issue, we propose the following Scheme 2.
Scheme 2 for the υ > 0 regime: For a time slot and a

transmitter i ∈ G(i) in an active cell, say cell C:
Case 1: If C is an inner cell, a receiver j belonging to the

same group, i.e., G(j) = G(i), is randomly selected from the
one-hop neighbors of i. Node i randomly chooses one of the
following operations with equal probability.
• Node i delivers a packet which is locally generated at i
to node j. Node j will act as a relay for this packet and
forward it later to another group.
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Fig. 4. Illustration of Scheme 2 for the υ > 0 regime. A packet is transmitted
from the source S to the destination D via multiple intermediate relay nodes
N1, N2 and N3.

• Node i forwards a packet which is destined for node j
to j. If no such packet exist, i remains idle.

Case 2: If C is a border cell, a receiver j belonging to
another group, i.e., G(j) 
= G(i), is randomly selected from
the one-hop neighbors of i. Node i randomly chooses one of
the following operations with equal probability.

• Node i forwards a packet which is originated from other
nodes in the same group as i, i.e., G(i)−{i}, to node j.

• Node i forwards a packet which is destined for group
G(j) to node j. If i carries a packet destined for j, i will
forward the packet directly to j.

One can see that except the operation of Case 2, Scheme 2
is actually very similar to Scheme 1. Note that in Scheme 2, a
transmitter in an active border cell can only transmit a packet
originated from nodes in its own group or a packet destined to
nodes in the same group as the receiver. Therefore, at most one
relay group will be employed for Scheme 2 to deliver a packet
while in Scheme 1 multiple relay groups may be employed.
Fig. 4 shows an example of Scheme 2, where a packet is

delivered from the source S to the destination D via three
intermediate relay nodes N1, N2 and N3. Here relay N2

belongs to the relay group, while relays N1 and N3 belong to
the source group and the destination group, respectively.
Based on Scheme 2, we now determine an achievable lower

bound on λ(n). Recall that CI denotes the set of inner cells
and CB denotes the set of border cells in a time slot. Since
each packet takes at most four hops to travel from the source
to the destination, we have

W · PE

(2 + �(1 + Δ)
√
8	)2

(∑
|CI |

PI +
∑
|CB |

PB

)
≤ 4nλ(n) (15)

According to the features of random direction and i.i.d.
models, both group centers and nodes have uniform steady-
state distribution in the network [4]. Therefore, (10) also holds

for the υ > 0 regime. Together with (15), it follows that

λ(n) ≥ c5W/a2

4n
= Ω

(n−1

r2

)
(16)

Similarly, one can easily verify that for any r = Ω(1/
√
n),

the order of upper bound in (14) is always no smaller than
that of the lower bound in (16).
Theorem 3: A region of per node throughput in the υ > 0

regime is

λ(n) =

{
O
(
n−1/2

r

)
Ω
(
n−1

r2

)
From Theorem 3 one can easily observe that the upper and

lower bounds on λ(n) converge to λ(n) = Θ(1) at the setting
of r = Θ(1/

√
n), irrespective of the group settings for α.

Therefore, the following corollary follows.
Corollary 3: The per node throughput capacity in the υ > 0

regime is
λ(n) = Θ(1)

Furthermore, such capacity can be achieved by Scheme 2 with
the setting r = Θ(1/

√
n).

Corollary 3 indicates the Θ(1) per node throughput capac-
ity, which was proved achievable under various independent
mobility models [5], [7]–[9], [11], can also be achieved by
adopting Scheme 2 under the correlated mobility with υ > 0.

B. Delay Analysis
We now proceed to analyze the average delay and corre-

sponding throughput-delay tradeoff for Scheme 2.
As shown in Fig. 4, a packet takes at most four hops to

reach its destination under Scheme 2. We denote by TSG the
time it takes for the source to deliver the packet to a relay node
in the source group, denote by TSG→RG the time it takes for
a relay in the source group to forward the packet to another
relay node in a relay group, denote by TRG→DG the time it
takes for a relay in the relay group to forward the packet to
a relay node in the destination group, and denote by TDG the
time it takes for a relay in the destination group to forward
the packet to the destination. Then we have

D(n) = E{TSG}+E{TSG→RG}+E{TRG→DG}+E{TDG}
(17)

After a derivation similar to that in Section IV-B, one can
easily see that during each time slot, there exists a constant
probability for the source to deliver the packet to a relay node,
say node N1. Therefore,

E{TSG} = Θ(1)

As proved before, the probability that node N1 goes to a
border cell in each time slot is Θ( a

R ). Furthermore, N1 will
deliver the packet to a relay node, sayN2, belonging to another
group with probability PB

2 . Thus, we have

E{TSG→RG} = Θ
( 2R

aPB

)
= Θ

(R
a

)
In order for node N2 in a relay group to deliver the packet

to another relay node in the destination group, the relay group
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Fig. 5. Illustration of two group regions whose group centers come into a
mutual distance of d.

center and the destination group center need to come into a
mutual distance d ≤ 2R+r, as shown in Fig. 5. We refer to the
event that the two group centers come into a mutual distance
d as a “meeting”, and denote by Tinter the inter-meeting time.
Then we have the following lemma [4].
Lemma 5: For the considered unit torus and any d� 1 and

υ � 1, the inter-meeting time Tinter under the random direc-
tion mobility model is approximately exponentially distributed
with inter-meeting density 8dυ

π .
During a meeting of these two group centers, N2 needs

to move to a border cell near the destination group so as to
deliver the packet to a relay node belonging to the destination
group. If we denote by p2 the probability that N2 delivers the
packet to a relay, say N3, belonging to the destination group,
we can see that p2 is actually closely related to d. One can
easily verify that when setting d = R we have p2 = Θ(1).
According to Lemma 5,

E{TRG→DG} = Θ
( π

8p2Rυ

)
= Θ

( 1

Rυ

)
For the case υ = Θ(1), a node is almost able to uniformly

visit the whole network area during each time slot. Therefore

E{TRG→DG} = Θ
( c6
9a2

)
= Θ

( 1

a2

)
Regarding the time it takes for N3 to deliver the packet

to the destination, using a derivation similar to that in Sec-
tion IV-B, it follows that

E{TDG} = Θ
(R2

r2

)
Combining the above results, for any υ > 0 and υ = o(1),

D(n) = Θ(1) + Θ
(R
a

)
+Θ

( 1

Rυ

)
+Θ

(R2

r2

)
= Θ

(R2

r2

)
+Θ

( 1

Rυ

)
= Θ

(
max

{n−α

r2
,
nα/2

υ

})
(18)

Similarly, for any υ = Θ(1), we have

D(n) = Θ
( 1

r2

)
(19)

Then we arrive at the following theorem.
Theorem 4: The average delay of Scheme 2 in the υ > 0

regime is

D(n) =

{
Θ
(
max

{
n−α

r2 , nα/2

υ

})
if υ = o(1)

Θ
(

1
r2

)
if υ = Θ(1)

The following corollary follows from Theorem 4 and Corol-
lary 3 directly.
Corollary 4: The proposed Scheme 2 achieves the per node

throughput capacity λ(n) = Θ(1) in the υ > 0 regime, at the
expense of average delay

D(n) =

{
Θ(max{n1−α, nα/2/υ}) if υ = o(1)

Θ(n) if υ = Θ(1)

C. Discussions
We summarize in Fig. 6 our results developed for the υ > 0

regime. Without loss of generality, the moving speed limit υ
is selected as the same order of magnitude as the transmission
range, i.e., υ = Θ(r), so as to clearly illustrate the delay region
and throughput-delay tradeoff region.
Fig. 6a illustrates the achievable throughput region by

varying the transmission range r from Ω(1/
√
n) to O(n−α/2).

One can easily observe from Fig. 6a that, the throughput
upper bound and lower bound scale as Θ(1) and Θ(nα−1),
respectively. Compared with the results in Fig. 3a, it is
interesting to find that by allowing node groups to move
around in the network, it is possible to achieve a Θ(nα/2)
times improvement in both the throughput upper bound and
lower bound. It is further noticed that the throughput upper
bound and lower bound established in Theorem 3, is actually
independent of the speed limit υ.
Fig. 6b illustrates the achievable delay region by Scheme 2.

One can observe from Fig. 6b that for α ∈ [0, 1] the delay
lower bound scales as Θ(nα), which is Θ(nα/2) times as that
in Fig. 3b. It indicates that the Θ(nα/2) times improvement
in throughput (as discussed above) actually comes at the
expense of also a Θ(nα/2) times increase in average delay.
Regarding the delay upper bound, it scales as Θ(n1−α) when
α ∈ [0, 1/3], and scales as Θ(n(α+1)/2) when α ∈ [1/3, 1].
Fig. 6c shows the achievable delay-throughput tradeoff

region. Similar to that observed in Fig. 3c, we find that in
the υ > 0 regime, it is still possible to achieve a delay-
throughput tradeoff much better than the delay/capacity ≥
O(n) tradeoff reported under the independent mobility [7],
[10], [14]. Specifically, the delay-throughput tradeoff is be-
tween Θ(n1−α) and Θ(n) when α ∈ [0, 1/3] and is between
Θ(n(α+1)/2) and Θ(n) when α ∈ [1/3, 1]. Note that Fig. 6c
only represents the case of υ = Θ(r), and for the general υ =
o(1), the delay-throughput tradeoff actually scales between
Θ
(
max

{
n1−α, nα/2

υ

})
and Θ

(
max

{
n1−α, n(2−α)/2

υ

})
.

As discussed in Corollary 3, Scheme 2 achieves the per
node throughput capacity λ(n) = Θ(1) in Fig. 6a by setting
r = Θ(1/

√
n), irrespective of the group settings (related to

α). A further careful observation of Figs. 6a and 6b indicates
that there actually exists an optimum group partition (in order
sense), i.e., α = 1/3, at which Scheme 2 achieves the through-
put capacity λ(n) = Θ(1), an average delay D(n) = Θ(n2/3)
and also the optimum tradeoff D(n)/λ(n) = Θ(n2/3).
For the setting α = 1, the considered network corresponds

to a scenario where nodes are evenly divided into Θ(n) groups
withΘ(1) nodes per group, and each group follows the random
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(a) λ(n) vs. α (b) D(n) vs. α (c) D(n)/λ(n) vs. α

Fig. 6. Throughput-delay tradeoff under the correlated mobility for the υ > 0 regime.

direction mobility [4]. As observed from Figs. 6a and 6b,
Scheme 2 achieves per node throughput capacity λ(n) = Θ(1)
and average delay D(n) = Θ(n) for the case υ = Θ(r), which
is consistent with that reported in [9], [20].
It is further noticed that under the setting υ = Θ(1), the

considered network corresponds to a network under the i.i.d.
mobility. From Corollaries 3 and 4, one can see that Scheme 2
is able to achieve the Θ(1) per node throughput capacity and
Θ(n) average delay, the same as proved in [5], [10].

VI. CONCLUSION
In this paper, we have investigated the scaling laws of

throughput, delay and their tradeoff in MANETs with cor-
related node mobility and a general setting of node moving
speed. This study provides fundamental insights into how
node correlation would affect the throughput and delay per-
formances in MANETs, especially in terms of group size
(related to α), moving speed υ and transmission range r. Our
results indicate that under both regimes of υ = 0 and υ > 0,
the correlated mobility could always result in a much more
efficient delay-throughput tradeoff than that under independent
mobility. Most importantly, the results in this paper can serve
as an instruction guideline to determine the optimum group
partition (i.e., α) so as to achieve the throughput capacity
and also the optimum delay-throughput tradeoff under the
correlated mobility.
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