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Abstract—MapReduce architecture has been considered as one
of the most promising candidates for efficient and reliable big
data mining. While current MapReduce is basically designed
for data center and enterprise networks, in which a number of
servers are interconnected with optical fiber cables, prospective
MapReduce would be applied in optical-wireless environment
such as optical-wireless data center network, fiber-wireless (FiWi)
access network, and so forth. To modify MapReduce for optical-
wireless hybrid network, we need to answer the fundamental
research problem, “How does MapReduce architecture use op-
tical and wireless resources for task allocation?” To answer
this question, this paper reveals some challenging issues and
proposes a context-aware task allocation scheme that is designed
by considering characteristics of both optical and wireless com-
munications. Our proposed task allocation scheme can minimize
the completion time of big data processing. Numerical results
are presented to demonstrate the effectiveness of our proposed
method compared with existing task allocation schemes.

Index Terms—Context-aware task allocation, MapReduce,
minimizing completion time, optical-wireless network.

I. INTRODUCTION

Throughout the last decade we have witnessed a tremendous
increase in data which is generated from whole society.
According to the latest statics [1], the number of IP network-
connected devices will be three times as high as the global
population by the end of 2017. As a result, the amount of
annual global traffic will reach 1.4 zettabytes in 2017, almost
16 gigabytes per capita, up from 6 gigabytes per capita in
2012. Furthermore, with the emergence of social network-
ing services and the use of information and communication
technologies in various industries, various types of data are
being produced (such as social media data, multimedia data,
customer data, log data, and so forth) [2]. Such kind of data,
called big data, has attracted much attention since it can
contain valuable and important information. However, big data
has different characteristics from traditional data, i.e., volume
(data size of terabytes to petabytes), variety (either structured
data or unstructured data), and velocity (requirement of real-
time data processing). Therefore, big data cannot be processed
in traditional manner using only a single high-spec server (i.e.,
super computer-based mining).

MapReduce is a superior architecture, which complies with
the requirements of big data mining. For efficient and reliable
big data mining, MapReduce distributes data to distinct servers
and these servers execute data processing in parallel. In

comparison with the traditional super computer-based mining,
MapReduce can perform more efficient big data processing
with cheaper servers. While conventional MapReduce archi-
tecture is designed for optical network such as data center and
enterprise networks [3], prospective MapReduce needs to be
modified to be applicable to optical-wireless hybrid network,
in which each server communicates with other servers by using
both optical and wireless links.

As a realistic optical-wireless hybrid network, the following
environments are considered. (i) With the explosive progres-
sion of wireless communications technology, optical-wireless
data center network will become the medium choice for future
data center networks. In this network, while intra-rack servers
communicate by radio, inter-rack communication is conducted
via optical fiber cables. (ii) In fiber-wireless (FiWi) access
networks, which integrate optical and wireless networks (e.g.,
passive optical network (PON) and wireless fidelity (WiFi)),
user terminals and networking devices execute data processing
in order to achieve efficient mobile cloud computing [4].
(iii) We are developing a disaster resilient network by using
movable and deployable resource units (MDRUs), which are
deployed to disaster area and provide the information and
communications services instead of damaged base stations,
optical fiber cables, and data centers [5]. In MDRU-based
network, each MDRU connects to other MDRUs with optical
fiber cables and connect with users through wireless links.

In order to redesign MapReduce for optical-wireless net-
works, we need to consider the fundamental research problem
“How does MapReduce architecture use optical and wireless
resources for task allocation?” In this paper, we propose an
optimal task allocation scheme that switches the communica-
tion mode (i.e. optical or wireless) by considering its char-
acteristics, such as the differences in multiple access control
and transmission schemes (unicast or multicast). The proposed
task allocation scheme effectively utilizes the network resource
based on network and server load, and minimizes the comple-
tion time of big data processing.

The remainder of the paper is organized as follows. First,
we survey some relevant research works on MapReduce for
combating the task scheduling issue in Section II. Then, we
describe our considered future vision of MapReduce in optical-
wireless hybrid networks and introduce its challenging issues
in Section III. Section IV presents a novel task allocation
scheme based on characteristics of both optical and wireless978-1-4799-0959-9/14/$31.00 c© 2014 IEEE



communications, followed by its performance evaluation in
Section V. Finally, concluding remarks are provided in Section
VI.

II. RELATED RESEARCH WORK

An introduction to the first MapReduce for parallel data
processing architecture has been presented by Dean et al.
in [6] in 2004. The architecture has been widely used in
many cloud computing frameworks such as Hadoop and nutch.
Fig. 1 shows an example of parallel data processing with
MapReduce. The nodes are classified into data processing
nodes and a master node. While the data processing nodes
store data and execute mapping and reduction processes, the
master node schedules tasks in both the mapping and reduction
processes. When a processing request is injected, the master
node finds nodes that store the data appertaining to the injected
task (here, nodes A and B). Additionally, the master node
selects mappers that execute the mapping process. Nodes A’,
A” and B’, B” are selected as mappers for node A and B,
respectively. Then, nodes A and B transmit replication data
to each mapper. The mappers perform mapping process that
picks out the required information to classify a large amount
of information. After the mapping process finishes, the master
node selects a reducer, which is a processing node executing
the reduction process, from the mappers (here, node A’). The
reducer collects the information extracted in mapping process
and executes the reduction process that outputs the result data.
While MapReduce can execute the data mining at a speed
proportional to the number of nodes, the performance depends
on task allocation and scheduling schemes. A lot of efficient
task allocation schemes have been proposed in literature.

The works [7]–[9] have developed load-aware task al-
location and scheduling schemes. In [7], the authors have
developed a parallel data processing architecture that allocates
tasks to different types of virtual machines, in order to improve
the overall resource utilization and reduce the processing
cost. The work [8] has proposed a dynamic task scheduling
for heterogeneous workloads. In the proposed scheme, three
types of queue based on I/O and CPU utilization are used to
distribute the heterogeneous workloads. In the work conducted
by A. Verma et al. [9], a task scheduling algorithm, which
optimizes the completion time and cluster resource utilization
under realistic workloads, has been proposed.

Another direction to develop network-aware task allocation
scheme has been considered in works [10]–[12]. M. Asahara
et al. have proposed a task scheduling scheme based on
network topology that can avoid the network congestion [10].
In [11], the authors have designed a MapReduce framework
for wireless data center. Through simulation, they verify the
effectiveness of MapReduce in wireless environment. The
work [12] has considered radio and computing resources shar-
ing problem and proposed a cooperative resource management
to provide an efficient cloud computing in wireless network.

In this paper, one of our contributions is opening up a new
direction for MapReduce, i.e., task allocation scheme based
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Fig. 1. Conventional parallel data processing architecture with MapReduce.

on characteristics of both the optical and wireless commu-
nications for minimizing completion time. In other words,
our work brings up important issue of resource utilization in
optical-wireless hybrid networks, which is an issue that is not
widely studied but can greatly decrease the performance of
conventional MapReduce.

III. MAPREDUCE IN OPTICAL-WIRELESS
HYBRID NETWORK

In this section, we present one of optical-wireless hybrid
networks, followed by challenging issues of MapReduce in
the considered optical-wireless hybrid network.

A. Network model

Our considered optical-wireless data center network is de-
picted in Fig. 2. Servers in each rack can be classified into
two groups. The first group consists of servers that only
have a wireless interface, and the other group consists of
servers that have wireless and wired interfaces. Although fully
wireless data center networks have been proposed in [13], the
considered network uses wireless interfaces only for intra-rack
communication since wireless communications have a small
coverage area and suffer from decreased signal strength due
to walls and barricades. Moreover, we suppose that carrier
sense multiple access/collision avoidance (CSMA/CA) is used
as a multiple access scheme. Inter-rack communication is
conducted via a wavelength division multiplex fiber cable with
optical path switching in order to provide high quality of ser-
vice (QoS) [14]. We use distributed optical path provisioning
as a path set-up scheme [15].

In case of intra-rack communication, servers transmit data
by unicast or multicast. Thus, intra-rack communication effec-
tively utilizes the radio resource by using multicast in the data
replication phase. On the other hand, data transmission scheme
is unicast in case of inter-rack communication because severs
that have wired interface reserve the optical path and transmit
data to inter-rack server via the reserved optical path. In
the data replication phase, inter-rack communication requires
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Fig. 2. Considered optical-wireless data center network, and intra-rack and inter-rack communication mechanisms.

the reservation of multiple optical paths. Therefore, efficiency
of inter-rack communication is lower than that of intra-rack
communication.

For simplicity, we assume that there exists a master node
and it is chosen from the servers that have wireless and wired
interfaces, whereas other servers act as data processing nodes.
Master node allocates tasks by two communication modes, i.e.,
intra-rack and inter-rack task allocation. In case of intra-rack
task allocation, the master node selects mappers and reducer
from servers in the intra-rack. In contrast, inter-rack allocation
choses them from the inter-rack servers that connect with the
top of rack (ToR) switch.

B. Challenging issues

In our envisioned network model, it is required to consider
the characteristics of optical and wireless communications and
MapReduce in order to achieve data processing with minimum
completion time. This section introduces some challenging
issues that tackle the development of efficient task allocation
schemes.

Communications-aware Task Allocation: It is necessary to
clarify the impact of communications mode selection (i.e.,
either inter-rack or inter-rack communication) on the comple-
tion time of parallel data processing. First, we mention task
allocation to intra-rack servers with wireless communications.
Because the master node transmits data to multiple mappers
to execute the mapping process, it is clear that multicast with
wireless communications is a better transmission scheme for
the mapping process. However, the wireless communication
is not suitable for the reduction process, in which multiple
mappers transmit data to a reducer. This is because mappers
are forced to wait to transmit data with the CSMA/CA mech-
anism, which results in drastic reduction of system throughput
and the emergence of transmission delay. On the other hand,
task allocation to inter-rack servers with optical path switching

inefficiently uses the resources because optical path provides
unicast transmissions. Additionally, the blocking probability
increases when the number of provisioned paths increases.
Thus, the process of allocating task to inter-rack servers is
not suitable for the mapping process, especially when data
redundancy, f , is larger. Similarly, inter-rack communication
wastes resources in reduction phase. Because optical path
reservation requires shorter waiting time for transmissions than
that of the CSMA/CA mechanism, task allocation to inter-
rack servers effectively uses the resources. It can be noticed
that there is a trade-off relationship between intra-rack and
inter-rack communications in terms of resource efficiency.
Therefore, optimal task allocation can be derived for efficient
parallel data processing.

Load-aware Task Allocation: Additionally, server load (CPU
and I/O load) should be considered for designing efficient
task allocation schemes, similar with many other existing
works [7]–[9]. The point that separates our work from those of
existing works is the consideration of the impact of commu-
nications mode on the server load. Multicasting with wireless
communications lacks retransmission schemes, error detection
and correction coding, which means much more redundancy
is required to ensure the reliability of the processed result.
However, server load may increase with higher redundancy.
Therefore, optimal redundancy to allocate task is derived by
considering both the reliability of result and server load. This
aspect should be taken into account for designing effective
task allocation.

Context-aware Task Allocation: Various information includ-
ing communications mode and servers load, (called context)
will help with the task allocation design. In optical-wireless
hybrid networks, network condition, data size, and data redun-
dancy also produce the beneficial information. Designing task
allocation schemes based on context information is required to
minimize the completion time of parallel data processing. Our



future direction is to discover the new context and integrative
development based on context information to achieve smart-
MapReduce.

IV. PROPOSED CONTEXT-AWARE
TASK ALLOCATION SCHEME

In this section, we propose a context-aware task allocation
scheme, which can shorten the completion time of big data
mining in optical-wireless data center networks.

In conventional MapReduce architectures, task allocation
schemes are designed based on server load or network load.
While the server load based task allocation scheme reduces
the execution time of data processing, the network load based
task allocation scheme achieves lower transmission delay.
Therefore, by considering the both metrics, we can opti-
mize the task allocation for minimizing the completion time
of data processing. Additionally, the conventional network
load based scheme allocates tasks by considering available
network bandwidth, which is not sufficient to allocate tasks
to appropriate processing nodes in optical-wireless network
environments since optical and wireless communications have
different characteristics, such as multiple access control and
data transmission schemes.

Therefore, our proposed task allocation scheme decides
the number of tasks that will be allocated to nodes in each
rack based on the expected transmission delay by considering
the characteristics of optical and wireless communications. In
addition to this, our proposed scheme selects adequate nodes
that have lower processing load as processing nodes. Through
these phases, our proposal can shorten the completion time of
big data mining.

A. Determining task load on each rack

In this phase, the master node decides the number of tasks
that will be allocated to servers in each rack based on the
expected transmission delay by considering the multiple access
control scheme of optical and wireless communications and
traffic model on mapping and reduction process. We define
m and n, which denote the numbers of tasks that will be
allocated to intra-rack and inter-rack servers, respectively. The
master node calculates Tintra(m) and Tinter(n), which are
the expected transmission delays required to allocate tasks
to distinct servers in intra-rack and inter-rack, respectively.
Tintra(m) and Tinter(n) are expressed as the sum of expected
transmission delays in mapping and reduction process.

In case of task allocation to intra-rack servers, servers are
forced to wait to transmit data with the CSMA/CA mechanism.
According to work [16], throughput of each node with IEEE
802.11, α(N), depends on the number of nodes that transmit
data, N . Because the master node transmits m tasks to distinct
mappers with wireless multicasting and the (m− 1) mappers
transmits the processed data to a reducer with unicasting, the
master nodes can calculate the transmission delay required
to allocate tasks to m intra-rack servers, Tintra(m), which is
expressed as follows.

Tintra(m) = Dmap/α(1) +Dred/α(m− 1), (1)

where Dmap and Dred indicate data sizes of tasks to be pro-
ceeded in the mapping and reduction processes, respectively.

Moreover, α(N) can be calculated by using the probability
that a node successfully transmits data, PS(N), and the theo-
retical throughput of wireless communication, BR, as follows.

α(N) = PS(N)BR. (2)

Here, the value of PS(N) is derived from [16].
In case of task allocation to inter-rack servers, the master

node allocates data to n inter-rack servers, and n mappers
transmit the processed data to a reducer via the reserved optical
paths. Because the optical path switch creates an optical path
connecting each server having traffic to send to all destinations
having traffic destined, the source node waits to transmit data
until optical path is provisioned. Let τ(N) denote the waiting
time required to create an optical path when N nodes require
optical paths. The value of τ(N) increases with increase in
N because the optical path provisioning is dismissed due to
blocking. The master node can calculate the transmission delay
required to allocate task to inter-rack servers, Tinter(n), by
using following equation.

Tinter(n) = Dmap/BW + τ(n) +Dred/BW + τ(n), (3)

where BW denotes the capacity of the reserved optical path.
Moreover, τ(N) can be defined in detail by considering the

acceptance probability on optical path provisioning, PA(N),
the time spent for a reservation trial, Ttrial, and the time spent
for reservation retrial, Tretrial. Assuming that the ith trial is
the first trial that succeeds in optical path provisioning and
M is the maximum number of trials, τ(N) is expressed as
follows.

τ(N) =

M∑
i=1

PA(N){1− PA(N)}i−1

×{iTtrial + (i− 1)Tretrial}. (4)

Here, the detailed derivation of PA(N) can be found in [17].
In order to minimize the transmission delay for data allo-

cation, the master node decides m and n based on calculation
results of Tintra(m) and Tinter(n) for all combination of m and
n. In other words, m and n that minimize the larger value in
Tintra(m) and Tinter(n) is selected as the optimal numbers of
tasks that will be allocated to intra-rack and inter-rack servers,
respectively. Additionally n tasks are evenly allocated to each
rack. Because the number of interfering nodes in wireless
communications and the number of available optical paths in
optical communications might affect the decision of the values
of m and n, the proposed task allocation scheme dynamically
changes task load on each rack based on network condition.

B. Processing nodes selection

While the previous phase minimizes the transmission delay
by using characteristics of communications and network con-
dition, this phase aims at minimizing the execution time of
data processing. The master node selects m servers that have
lower loads as processing nodes from the intra-rack servers and



TABLE I
PARAMETER SETTINGS.

Wireless capacity 7Gbps

Contention window 63

Capacity per wavelength 1Gbps

Number of wavelengths 10

Number of racks 18

Number of servers in a rack 20

Data size 125Mbyte

Number of servers connecting with ToR switch in a rack 3

Number of master nodes 1

selects n servers from inter-rack servers. However, the master
node wastes resources for collecting the load information from
all servers. Indeed, throughput of the both communications
drastically decreases with load information sharing. To cope
with this issue, in our proposed scheme, threshold based
information sharing is used. In this scheme, the master node
broadcasts the message including threshold of load to all
nodes. Nodes that have lower loads than the threshold reply
with a message including its task loads information. Thus, the
master node knows the candidate for processing nodes.

V. PERFORMANCE EVALUATION

In this section, we confirm the effectiveness of the pro-
posed task allocation scheme through numerical results. The
proposal is compared with the load-aware and random task
allocation schemes. While the load-aware allocation scheme
selects processing nodes based on I/O and CPU utilization, the
random allocation scheme selects processing nodes in random
manner. In this performance evaluation, we show the results
of the completion time in three different scenarios.

A. Parameter settings

The parameter settings are summarized in Table I. In this
performance evaluation, we suppose that the topology of
optical-wireless data center network follows Fig. 2. In our
supposed data center network, there are 20 racks, which
are connected with optical fiber links, where the number of
wavelengths is 10 and capacity per wavelength is 1Gbps. Intra-
rack communication is carried out by 60GHz based IEEE
802.11ad with 7Gbps capacity. Additionally, the contention
window is set to 63. There are 20 servers and 3 servers
connect with ToR switch, where we assume that links between
servers and ToR switch has sufficient bandwidth. Data size of
processing tasks for both mapping and reduction process is 125
Mbyte. To model the load heterogeneity, we suppose that the
processing time of servers follows the binomial distribution,
where average and variance are set to 1.5s and 0.3s, respec-
tively. In this network, we evaluate the completion time when
a request is injected. In order to confirm the impact of various
environments on the performance of proposal, we consider
three different scenarios, i.e., various data redundancy, wireless
network condition, and optical network condition.

 2

 3

 4

 5

 6

 7

 8

 1  2  3  4  5  6

C
o
m

p
le

ti
o
n
 t

im
e 

[s
]

Redundancy

Proposed allocation
Load-aware allocation

Random allocation

(a) Impact of the task redundancy on the completion time

 3

 4

 5

 6

 7

 8

 9

 0  2  4  6  8  10

C
o
m

p
le

ti
o
n
 t

im
e 

[s
]

Number of interfering nodes

Proposed allocation
Load-aware allocation

Random allocation

(b) Impact of the interfering nodes on the completion time.

 3

 4

 5

 6

 7

 8

 9

 10

 1  2  3  4  5  6  7  8  9  10

C
o
m

p
le

ti
o
n
 t

im
e 

[s
]

Number of available wavelengths

Proposed allocation
Load-aware allocation

Random allocation

(c) Impact of the number of available wavelengths on the completion
time.

Fig. 3. Performance comparison in terms of completion time in different
scenarios.

B. Numerical results

In the graphs presented in Fig. 3, we demonstrate the
performance of the proposed context-aware and existing task
allocation schemes in three scenarios. Fig. 3(a) exhibits the
completion time when task redundancy is varied from 1 to



6, where the number of interfering nodes that send unrelated
data and the number of available wavelengths are set to 5.
From the result, it is clear that our proposed scheme achieves
shorter completion time regardless of task redundancy. It can
be noticed that the slope of proposed scheme changes when
redundancy is 2 and 3. From these points, the proposed scheme
uses inter-rack servers as processing nodes because the intra-
rack communication requires longer transmission delay than
that of the inter-rack communication.

Fig. 3(b) demonstrates the result when the number of
interfering nodes is varied from 0 to 10, where redundancy
and the number of available wavelengths are set to 3 and
5, respectively. Because the proposed scheme changes the
number of tasks that will be allocated to each rack with
increase in the number of interfering nodes, it is able to
keep the lower completion time. On the other hand, the
load-aware and random task allocation schemes require more
completion time because the load-aware and random task
allocation schemes use intra-rack servers as processing nodes
in spite of the decrease in wireless throughput.

Fig. 3(c) shows the impact of the number of available
wavelengths on the completion time, where redundancy and
number of interfering nodes are set to 3 and 5, respectively.
Similar to the previous results, the proposed scheme achieves
a shorter completion time of data mining. Moreover, the pro-
posed scheme achieves outstanding performance with increase
in the number of available wavelengths, i.e., the completion
time with the proposed scheme reduces by approximately
61 percent when the number of available wavelengths is
10. From these results, we can conclude that the proposed
scheme efficiently allocates tasks and obtains the processing
result with shorter completion time in optical-wireless hybrid
networks.

VI. CONCLUSION

An efficient parallel data processing with MapReduce is
required to realize more convenient and comfortable big
data mining. However, the conventional MapReduce is not
suitable to provide the high-speed data processing in optical-
wireless hybrid networks because it is designed for optical
wired networks. To address this challenge, in this paper,
we highlighted the importance on designing appropriate task
allocation scheme for efficient data processing in optical-
wireless hybrid networks. Additionally, we proposed a simple
yet effective task allocation scheme, which is designed based
on context information. By deciding the number of tasks that
will be allocated to servers in each rack based on the expected
transmission delay, the proposed task allocation is able to
shorten the completion time of big data processing. Moreover,
the results obtained from numerical analysis demonstrated the
effectiveness of our proposed task allocation scheme with the
significant improvement in completion time. In future, our
work will perform further investigations on how to enhance
the processing reliability of MapReduce.
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