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Abstract—Although the importance of Disaster Response Net-
works (DRNs) has been highlighted in many researches, the
requirement of spectrum agility has not been well addressed.
In this paper, we focus on using all-spectrum cognitive radio for
DRNs to fulfill this requirement. We consider a DRN constructed
by Cognitive Radio Base Stations (CRBSs), which are deployed in
the disaster affected area. Each CRBS is equipped with multiple
antennas to support different frequency bands available in the
area. Based on the considered DRN, we propose a Graph-based
Hybrid Adaptive Routing scheme, which we refer to as GHAR.
There are two phases in GHAR, centralized phase for topology
formation and distributed phase for adaptive routing. In the
centralized phase, we propose an algorithm that unites k non-
overlapping minimum spanning trees to construct the topology
for the next phase. We provide an analysis on the relationship
between k and the adaptability with cognitive radio as well as
the complexity of routing process. We also provide an analysis
on the optimality of k. Furthermore, extensive simulations are
conducted to validate our analysis. Simulation results confirm
the effectiveness of our proposal and the existence of the optimal
value of k.

Index Terms—Cognitive radio, adaptive routing, graph-based
algorithm, disaster response network.

I. INTRODUCTION

The significant impact of disasters on human life has drawn
a great deal of research attention on disaster responses. After
a disaster occurs, the network infrastructure in the disaster
affected area can be damaged or completely destroyed. If some
remaining cellular base stations are still operating, the critical
situation can be relaxed by using device-to-device (D2D)
communication approaches such as in [1], which introduces
a novel D2D local area network (D2D-LAN) framework for
improving network capacity. If all base stations are completely
destroyed, a totally new network needs to be deployed. In
order to deal with both situations, building a new disaster
response network (DRN) for the disaster area is the most
suitable choice. Many research works have been conducted
in the field of DRNs [2]–[5], which highlight the key require-
ments of DRNs including quality of service (QoS), robust-
ness and reliability, coverage and mobility, rapid deployment,
interoperability, spectrum agility, self-organization, and cost
effectiveness. In order to fulfill the requirements of DRNs,
especially in terms of spectrum agility, which has not been
well addressed in the existing works, cognitive radio should be
considered because of its advantages including heterogeneity,
reconfigurability, self-organization, and interoperability with

existing networks [6]–[8]. Particularly, due to the effect of the
disaster, the infrastructure could be completely destroyed or
partially damaged, or might be able to operate intermittently,
resulting in a significant availability of spectrum for use
by cognitive radio. The availability of spectrum depends on
locations and time periods due to different degrees of disaster
effects and the situations of recovery process, respectively.
Therefore, a method that effectively and adaptively utilizes
the available spectrum in the disaster affected area is re-
quired. In order to design such a method, we focus on the
following research issues. First, all-spectrum cognitive radio
should be considered for utilizing any available spectrum
in the area. Second, the differences in time, location, and
operator might lead to the difference in the availability of
spectrum. Furthermore, only some locations in the disaster
area can have connectivity to the outside world, and thus, the
method to route traffic in the area to such locations needs to
be taken into account. To effectively address these research
issues, we consider a cognitive radio based DRN as shown in
Fig. 1(a). After a disaster occurs, many mobile base stations,
which we refer to as Cognitive Radio Base Stations (CRBSs),
are deployed to the area to provide network communication
services. Each CRBS is equipped with multiple antennas to
support different frequency bands, such as cellular networks,
WiMAX, television, and so forth. Traffic from all CRBSs will
be routed to the gateway, i.e., the CRBS having connectivity
to the outside area. We assume that the CRBSs are agile and
cost-efficient enough to be deployed with a relatively large
amount in the disaster affected area. However, the trade-off
relationship between the adaptability with cognitive radio and
the routing complexity needs to be solved. If each CRBS has
too many direct connections to other CRBSs in the area, the
routing process will have a high complexity, causing high
delay in routing traffic. On the other hand, if each CRBS has
too few neighbors, when the neighboring nodes cannot use the
spectrum, the CRBS is unable to find the next hop to route its
traffic, and thus, fails to adapt with the changing environment.

Motivated by this crucial trade-off problem, we propose
a routing scheme called the Graph-based Hybrid Adaptive
Routing (GHAR). Our proposed scheme includes two phases:
centralized and distributed phases. In the centralized phase,
a central CRBS eliminates unnecessary neighbors of each
node in the network. The objective of this phase is to form a
topology and reduce the complexity of routing process. Our
proposed algorithm for the centralized phase aims to find
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Fig. 1. Considered disaster response network using cognitive radio base stations. (a) Considered scenario. (b) Corresponding modeled network.

k non-overlapping minimum spanning trees (MSTs) on the
original network. The combination of the resulted MSTs forms
the topology for the next phase. In the distributed phase, a
distributed adaptive routing algorithm is carried out on the
constructed topology. Distributed adaptive routing is employed
to guarantee the adaptability of the network with the change
of available spectrum in the area. Furthermore, we provide an
analysis on the relationship between k and the adaptability
with cognitive radio as well as the complexity of routing
process. An analysis on the optimality of k is also provided. In
addition, extensive simulations are conducted to validate the
analytical findings. The simulation results confirm that there
is a value of k that optimally solves the trade-off relationship
between cognitive radio adaptability and network complexity.

The remainder of this paper is organized as follows. Sec-
tion II outlines the motivation and challenges of the cognitive
radio based DRNs. In Section III, we introduce our assump-
tions, the network model, and the metrics for evaluating the
considered network. In Section IV, we describe our proposed
scheme called GHAR, which includes both centralized and
distributed phases. The analysis on the trade-off relationship
between complexity of routing process and the adaptability
with the changing environment is presented in Section V. We
present the performance evaluation in Section VI and conclude
the paper in Section VII.

II. COGNITIVE RADIO BASED DISASTER RESPONSE

NETWORKS: MOTIVATION AND CHALLENGES

In this section, we provide a discussion on the necessity
of having all-spectrum cognitive radio based DRNs and the
challenges to make those DRNs possible.

A. Motivation of Disaster Response Networks Based on All-

Spectrum Cognitive Radio

Among the approaches to fulfill the requirements of DRNs,
cognitive radio is considered as the most suitable candidate of
DRNs because of its two noticeable features. First, cognitive
radio can utilize the available spectrum in the area when the
primary user of the spectrum does not use it. In fact, the
spectrum resource will be widely available in the disaster areas
due to the damages of infrastructure after disasters. Second,

cognitive radio can adaptively change with the change of
available spectrum. Especially in disaster areas, the change
of available spectrum is expected to happen more frequently.
However, according to the survey results presented in [2],
none of the conducted works can satisfy the requirement of
spectrum agility, which is the capability of operating in a wide
range of different frequency bands. Therefore, in this paper, we
focus on using all-spectrum cognitive radio for DRNs to utilize
any available spectrum in disaster affected areas. By making
DRNs support multiple frequency bands, the networks can be
adapted to local variations in spectrum use and regulation.

B. Challenges for Cognitive Radio Based Disaster Response

Networks

In order to apply cognitive radio for DRNs, there are many
challenges that need to be resolved. Here, we outline three
main challenges for cognitive radio based DRNs.

• Routing: unlike other type of networks, DRNs have to
face more difficulties due to the situation in disaster
affected area. Following a disaster, many places in the
area might be isolated. Only few locations can have
connectivity to outside world, which are the locations
located closely to non-affected area, or the locations
having facilities to connect to a network with very large
coverage such as satellite network [9], [10]. Therefore,
even though we can deploy network equipment to isolated
locations, routing is very important to bring network
connectivity to the whole isolated area.

• Adaptability: this is always a challenge for cognitive radio
networks. However, in the DRNs scenarios, the challenge
becomes even more critical due to the frequent change
of available spectrum. In disaster areas, base stations and
infrastructure can be inactive because of many reasons:
power outage, damage, safety shutdown, and so forth. It
is not easy to predict when and how the infrastructure will
recover, because the situation is different for each disaster.
Therefore, adaptability is one of the major challenges for
designing a cognitive radio based DRN that can adapt
with different scenarios of disasters.

• Complexity: the demand of using network service in
disaster areas is always much higher than normal because
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the disaster victims will try to use the Internet to confirm
safety of their family, relatives, and friends, while the
network infrastructure is usually damaged or destroyed.
However, as mentioned above, only a few places in the
area can have connectivity to outside area. Therefore,
after DRN is deployed in the area, the complexity of
the routing process needs to be minimized, in order to
provide acceptable Internet connection to users in the
disaster affected area.

III. SYSTEM ASSUMPTIONS AND DEFINITIONS

In this section, we first summarize the assumptions for
our considered network, and then present how the network is
modeled. Furthermore, the metrics to evaluate the effectiveness
of the proposed scheme are introduced.

A. System Assumptions

As shown in Fig. 1(a), the considered DRN is constructed
by multiple CRBSs. Each CRBS is equipped with multiple
antennas to support multiple frequency bands. The CRBSs
are assumed to have the ability to switch between different
antennas to adapt with the change in available spectrum in the
area. Additionally, we assume that at a certain time, a central
CRBS can be selected to carry out the centralized phase, which
is for forming the topology.

B. Network Model

For a cognitive radio based DRN constructed by CRBSs, we
define a graph G(V,E), as shown in Fig. 1(b), where V is the
set of nodes, i.e., CRBSs, and E is the set of links connecting
the CRBSs. In this paper, we use index number i to represent
CRBS i and a pair (i, j) to represent the link connecting CRBS
i and CRBS j. The Euclidean distance between CRBS i and
CRBS j is represented by dij .

1) Spectrum availability at a node: In the considered
network, the central CRBS periodically senses the spectrum
availability status and select the best frequency band for the
DRN to use for the next time period. Since the availability
of the selected frequency band in each locations is different,
we define ρi as the probability that the CRBS i can use the
selected frequency band in its local area during the next time
period.

2) Link cost: The cost of the link (i, j), cij , is calculated
base on ρi, ρj , and dij as follows:

cij = (1− ρiρj)dij . (1)

(1 − ρiρj) is the probability that at least one of the two
CRBSs, i and j, cannot use the frequency band. In other
words, (1 − ρiρj) is the probability that the link (i, j) will be
disconnected during the next time period. dij is the distance
between i and j. A longer distance leads to a weaker link
between the two CRBSs. Therefore, the reason behind the
equation (1) is that by choosing the link, we accept the risk
of having the link that might be broken or weaken due to the
effect of spectrum availability and link distance. Large values
of ρi and ρj and small value of dij lead to low link cost, and
vice versa.

3) Neighbor set: The set of neighbors of a CRBS i, Ni, is
defined as follows:

Ni = {j : j ∈ V, (i, j) ∈ E}. (2)

C. Metrics

In order to evaluate the performance of the considered DRN,
we introduce the following metrics.

1) Cognitive Radio Adaptability Index (CRAI): We intro-
duce CRAI of a CRBS as the index of the node’s adaptability
with the change of available spectrum. CRAI of a CRBS
depends on the set of the CRBS’s neighbor nodes and the
probability that each neighbor can use the spectrum in its local
area.

Ai =
∑

j∈Ni

ρj , (3)

where Ai is the CRAI of the CRBS i, and ρj is the probability
that the CRBS j can use the spectrum at its local area.

2) Network complexity: This metric calculates the complex-
ity that routing process might have when it is carried out on
the topology constructed by the centralized phase. It is directly
affected by the number of nodes and links of the network. The
number of neighbors per CRBS can also be used to evaluate
this metric.

3) Average node degree: In the graph modeling the consid-
ered network, degree of a node is calculated by the number
of adjacent nodes. Therefore, the average node degree, D, is
calculated by the average number of neighbors per CRBS as
follows:

D =
1

|V |

∑

i∈V

|Ni|. (4)

4) Average number of hops to gateway: This metric is to
estimate the number of hops from CRBSs in the disaster area
to the gateway CRBS in the routing phase. After the topology
is constructed, shortest paths from CRBSs to the gateway
CRBS in terms of number of hops will be found. The average
number of hops to gateway, H , is calculated by the average
number of hops in the resulted paths as follows:

H =
1

|V |

∑

i∈V

hi, (5)

where hi is the smallest number of hops needed to route traffic
from CRBS i to the gateway.

5) Utility function: This metric can be considered as one of
the most important metrics to evaluate the effectiveness of the
network. We consider CRAI as the payoff we get after forming
the topology in the centralized phase, and the production of
the average node degree and the average number of hops to the
gateway as the estimated cost for routing phase based on the
resulted topology. The utility function, U , can be calculated
as follows:

U =

∑
i∈V Ai

D ×H
. (6)
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IV. GHAR: THE PROPOSED GRAPH-BASED HYBRID

ADAPTIVE ROUTING SCHEME

Our proposed scheme, GHAR, includes two phases: cen-
tralized phase and distributed phase. In the centralized phase,
a CRBS will be assigned as the central node to form the
topology in which the redundant neighbors of each node,
i.e., each CRBS, are removed before the next phase. In the
distributed phase, a distributed adaptive routing will be carried
out based on the topology formed in the previous phase. Note
that the main contributions of this proposal are the hybrid
approach and the algorithm inside the centralized phase. In the
distributed phase, any distributed adaptive routing algorithm
can be used. Selecting the algorithm for adaptive routing is
not within the scope of this paper.

A. Centralized Phase: Topology Formation

The most straightforward consideration of a redundant
neighbor of a node is that the node will not choose that
neighbor to be the next hop for transmission in any case.
To come up with a scalable solution for removing redundant
neighbors of each node, we design an algorithm to keep at least
k neighbors while the chosen neighbors have high probability
to be the next hop of the node in transmissions. k is a tuning
factor that we can use to adjust the number of links in the
topology. In order to keep the best neighbors of each node
in terms of minimizing the total link cost, we extend the
traditional MST algorithm [11] by using the equation (1) for
calculating weights of links. Note that the traditional MST use
only Euclidean distance between two nodes of a link as the
link weight, we also consider the probability that each node
can be used for transmissions. In order to guarantee that each
node has at least k neighbors, we find k non-overlapping MSTs
of the graph and combine them to construct the topology. As
shown in Algorithm 1, in each iteration i, the ith MST of the
graph, MSTi(Vi, Ei) is found. After that, the links in MSTi,
Ei, are removed from the original graph and added to the
topology. By doing this process, the MSTs are guaranteed to be
non-overlapped. MSTs are commonly found by using Prim’s
algorithm with the time complexity of O(|E| log |V |) [11].
Therefore, the complexity of the centralized phase, which is
carried out only one time, is O(k|E| log |V |).

B. Distributed Phase: Adaptive Routing

After the topology formation phase, the resulted topology
is used for routing the traffic in the DRN. In our proposed
scheme, the topology formation phase is modularized and
does not depend on the routing method that will be used
in the next phase. Therefore, in the distributed phase of
our proposal, any adaptive routing algorithm can be applied.
Note that our main contributions are the hybrid approach and
the highly modularized topology formation method, not the
specific adaptive routing algorithm.

V. OPTIMALITY OF k

In this section, we analyze the relationship between k and
the metrics introduced in Section III-C. Base on the analysis,
we discuss the existence of the optimal value of k that
maximizes the performance of the proposal.

Algorithm 1 Topology Formation

Input: G(V,E), k.
Output: Topology for the routing phase, G∗(V ∗, E∗).

1: Calculate the cost of each link by using (1).
2: G′(V ′, E′)← G(V,E)
3: V ∗ ← V ′

4: E∗ ← ∅
5: for i← 1 to k do

6: Find the ith MST of G′(V ′, E′), MSTi(Vi, Ei)
7: E′ ← E′ \ Ei

8: E∗ ← E∗ ∪Ei

9: end for

10: return G∗(V ∗, E∗)

A. Cognitive Radio Adaptability Index versus k

Lemma 1: Given a network G(V,E) and the value of k.
G∗(V ∗, E∗) is the topology resulted by applying Algorithm 1
on G(V,E). The average CRAI of the nodes in the topology
G∗(V ∗, E∗) monotonically increases with the increase of k.

Proof: Based on (3), the average CRAI, Aave, of the
nodes in the topology G∗(V ∗, E∗) is calculated as follows:

Aave =
1

|V ∗|

∑

i∈V ∗

∑

j∈Ni

ρj . (7)

As shown in Algorithm 1, when k increases, |V ∗| does
not change and always equals to |V |. The change in the
constructed topology is only in E∗. The increase of k leads
to the increase in the neighbors of each node i, Ni. Thus,∑

j∈Ni
ρj increases, and accordingly, Aave increases.

B. Network Complexity versus k

Lemma 2: Given a network G(V,E) and the value of k.
G∗(V ∗, E∗) is the topology resulted by applying Algorithm 1
on G(V,E). The complexity of routing phase using G∗

monotonically increases with the increase of k.

Proof: In Algorithm 1, when k is increased by 1, the
number of adjacent nodes for each node in the topology will
be increased at least by 1. For routing based on the topology,
each node needs to try with at least one more neighbor as
the next hop. Hence, the complexity of routing phase will
qualitatively increase with the increase of k. The increase
in complexity depends on the routing algorithm used in the
routing phase. For example, Dijkstra algorithm [12], the most
well-known algorithm for finding shortest paths in graphs, has
the complexity of O(|E∗| + |V ∗| log |V ∗|). In Algorithm 1,
when k increases, more links are added to E∗ while V ∗ is kept
the same. Therefore, the complexity of O(|E∗|+|V ∗| log |V ∗|)
will increases with the increase of k.

C. Average Number of Hops to Gateway versus k

Lemma 3: Given a network G(V,E) and the value of k.
G∗(V ∗, E∗) is the topology resulted by applying Algorithm 1
on G(V,E). When the shortest paths in terms of hop count
are considered, the average number of hops from nodes on the
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Fig. 2. k versus the average CRAI (a), the complexity (b), and the average number of hops to gateway (c).

TABLE I
SIMULATION SETTINGS

Parameter Value

Simulation area 10 km × 10 km

Number of CRBSs 40, 60, 80

ρi of CRBS i 0.0 - 1.0

Transmission range of CRBSs 3 km

Number of different scenarios 300

topology G∗(V ∗, E∗) to the gateway monotonically decreases
with the increase of k.

Proof: In Algorithm 1, when k increases, more links are
added to E∗ while V ∗ is kept the same. Therefore, there will
be more possible paths from any node on the topology to the
gateway. When we consider shortest paths in terms of hop
count, with the increase of k, the new shortest paths will have
less hop count than before, or at least keep the same number.
Thus, the average number of hops from CRBSs to the gateway
CRBS, monotonically decreases when k increases.

D. Optimality of k

As proven above, when k increases, the average CRAI
increases, and thus, the total CRAI of the network,

∑
i∈V Ai,

also increases. Furthermore, the increase of k leads to the
increase of the average node degree, D, and the decrease of the
average number of hops to gateway, H . Therefore, according
to (6), there will be a value of k that maximizes the utility, U ,
of this proposal. Note that in every specific network scenario,
the value of k has an upper bound, which is the largest node
degree in the modeled graph. The optimal value of k can be
any value between 1 and the upper bound, depending on the
network scenario.

VI. PERFORMANCE EVALUATION

In order to validate the analytical findings and evaluate the
performance of the proposed scheme, extensive simulations
are conducted. In this section, the simulation setup and the
evaluation results are presented.

A. Simulation Setup

Table I presents the details in settings of our simulations. In
the area of 10 km× 10 km, the CRBSs are randomly deployed.

The number of CRBSs is set to three different values, 40, 60,
and 80, in order to evaluate the effect of CRBS density on
the performance of the proposal. The probability that a CRBS
i can cognitively use the spectrum in its local area, ρi, is
randomly assigned from 0.0 to 1.0. The transmission range
of CRBSs is set to 3 km. 300 different network scenarios are
generated to find average results.

B. The Relationship between CRAI and k

Fig. 2(a) demonstrates the relationship between the average
CRAI and the value of k. The results show that when k
increases, the average CRAI of the network also increases,
which validates the conclusion of Lemma 1. The figure also
shows the behavior of CRAI when the number of CRBSs
changes. When k is small, e.g., k equals to 1 or 2, the change
of the number of CRBSs does not make any significant change
in the average CRAI. However, when k becomes larger, i.e.,
more than 3, the effect of the number of CRBSs on the value of
CRAI becomes more noticeable. The larger number of CRBSs,
the higher value of CRAI.

C. The Relationship between Complexity and k

In order to estimate the routing complexity with the resulted
topology, we evaluate the complexity of finding shortest paths
on the topology by using Dijkstra algorithm. Dijkstra algo-
rithm on a graph G(V,E) can be implemented with the com-
putation time of O(|E|+ |V | log |V |). Fig. 2(b) demonstrates
the value of |E| + |V | log |V | with the topology resulted by
using our simulations. The results show that when k increases,
the complexity also increases. This proves the conclusion in
Lemma 2. The figure also shows that the larger the number of
CRBSs, the larger the complexity. It is reasonable because an
increase in the density of network nodes will make the number
of each node’s neighbors increases.

D. The Relationship between the Average Number of Hops to

Gateway and k

Fig. 2(c) validates the conclusion of Lemma 3 by showing
that when k increases, the average number of hops to gateway,
H , decreases. Furthermore, different numbers of CRBSs make
different curves. A high density of CRBSs makes H decrease
faster than a small density. In this figure, the lines intersect
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Fig. 3. Different network scenarios lead to different optimal values of k, for example, optimal k equals to 3 in (a) and 4 in (b). (c) The distribution of
optimal values of k with different network scenarios and different numbers of CRBSs.

when k equals to 7. When k is greater than 7, the increase in
CRBSs’ density even makes H decrease, which is contrary to
the trend when k is less than 7. This is because if the density of
CRBSs is small, a large value of k can not make more change
in the topology. In contrast, if the density of CRBSs is large
enough, more paths with less hop count will still be added
to the topology. The paths with less hop count will make the
average number of hops to the gateway, H , decrease.

E. The Existence of the Optimal k

The relationship between k and the utility, U , is presented
in Fig. 3, with different network scenarios. Figs. 3(a) and 3(b)
demonstrate an example of having different optimal values
of k for maximizing the utility when the network scenario
is generated randomly with different seeds. It shows that the
optimal value of k does exist but might be different depending
on network scenarios. Fig. 3(c) illustrates the distribution of
the optimal values of k and the optimal points when 300
different scenarios are simulated with different numbers of
CRBSs. The figure shows that even with the same number
of CRBSs, the optimal values of k can be also different with
different generated scenarios. However, when the number of
CRBSs becomes higher, the optimal values of k also tends to
become larger.

VII. CONCLUSION

In this paper, we focused on all-spectrum cognitive radio
based DRNs to fulfill the spectrum agility requirement of
DRNs. The considered DRN is constructed by CRBSs, de-
ployed in the disaster affected area. Each CRBS is equipped
with multiple antennas to support different frequency bands
available in the area. All CRBSs in the network route their
traffic to the CRBS having connectivity to the outside area.
On the considered DRN, we proposed a Graph-based Hybrid
Adaptive Routing scheme, which we referred to as GHAR. The
proposed scheme includes two main phases, centralized phase
for topology formation and distributed phase for adaptive rout-
ing. We proposed an algorithm that unites k non-overlapping
MSTs on the original network to construct the topology in the
centralized phase. An analysis on the relationship between k
and the cognitive radio adaptability as well as the complexity
of routing process was provided. Also, we proved that there
is a value of k for a given network that optimally solves the

trade-off relationship between cognitive radio adaptability and
the network complexity. Additionally, extensive simulations
were conducted to verify our analysis. The simulation results
demonstrated the effectiveness of our proposal and confirmed
the existence of the optimal value of k.
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