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Reliability Assessment for Wireless Mesh Networks
Under Probabilistic Region Failure Model

Jiajia Liu, Student-Member, IEEE,Xiaohong Jiang,Senior Member, IEEE,Hiroki Nishiyama,Member, IEEE,
and Nei Kato,Senior Member, IEEE

Abstract—Wireless networks in open environment are exposed
to various large region threats, like the natural disasters and
malicious attacks. Available work regarding region failures gen-
erally adopt a kind of “deterministic” failure models, which
failed to reflect some key features of a real region failure. In
this paper, we provide a more general “probabilistic” region
failure model to capture the key features of a region failure and
apply it for the reliability assessment of wireless mesh networks.
To facilitate such assessment, we develop a grid partition-based
scheme to estimate the expected flow capacity degradation from a
random region failure. We then establish a theoretical framework
to determine a suitable grid partition such that a specified
estimation error requirement is satisfied. The grid partition
technique is also useful for identifying the vulnerable zones
of a network, which can guide network designers to initiate
proper network protection against such failures. The work in
this paper helps us understand the network reliability under a
region failure and facilitates the design and maintenance of future
highly survivable wireless networks.

Index Terms—Wireless mesh networks, region failure, network
reliability.

I. I NTRODUCTION

In recent years, the wireless mesh networks have increas-
ingly gained interests in both academia and industry. As a
promising and flexible networking technology, the wireless
mesh network is expected to support data communications
for some important and mission critical applications, likethe
disaster relief and battlefield headquarter construction.Due
to the nature of wireless communications, the nodes there
are exposed to various hazards [1]–[3], such as the natural
disasters and malicious network attacks [4], [5]. Thus, the
pre-active evaluation of network reliability and survivability
against network failures becomes essential for the design
and maintenance of future highly survivable wireless mesh
networks.

In the light of failure inevitability and its detrimental
consequences, many studies have been dedicated to the design
of failure-resilient networks. Stefanakoset al. in [6] examined
the routing issue in networks that require guaranteed reliability
against multiple link failures. Awerbuchet al. in [7] proposed
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an on-demand routing protocol for ad hoc wireless networks,
which provides resilience to byzantine failures caused by
individual or colluding nodes. Bhandari and Vaidya [8] consid-
ered the problem of reliable broadcast in a wireless network,
where each node can fail independently. Yu and Zhang [9]
proposed a novel scheduling algorithm for sensor networks to
bound the service loss duration due to node failures and to
provide continuous surveillance coverage even when a subset
of sensors fail. The fast restoration and protection against link
and node failures have also been explored recently, see, for
example [10]–[13].

Most of available network survivability studies are based
on one common assumption that failures are random and
independent, which failed to reflect many real scenarios. The
real-world disasters or attacks, like the earthquake, hurricane,
physical bomb explosion or electromagnetic pulse (EMP)
attack [14], [15], always happen in a particular geographical
location and result in the so-calledregion failure( [16]–[26]).
Under a region failure, multiple network components may
simultaneously corrupt but they are geographically correlated
and constrained within a specific region. Thus, it is important
to take into account the geographical information of networks
in the study of such failures, and some research has been
conducted to understand the impact of region failures on wired
backbone networks ( [19]–[26]). In this paper, we focus on
the reliability assessment of wireless mesh networks undera
random region failure.

There are few related works concerning region failures in
wireless networks. Senet al. in [16], [18] explored the region-
based connectivity issue in wireless networks and showed how
to adjust the transmitting power to maintain a region-based
connectivity in presence of region failures. This work was
further extended into multiple region failure model (MRFM)
[17], where the failures are no longer confined within a single
region. Xu et al. in [27] adopted the percolation theory to
characterize the spread of correlated failures in large wire-
less networks, and analyzed the condition under which an
initial node failure will/will not permeate the whole network.
Azimi et al. in [28] addressed the problem of building data
redundancy with the minimum communication cost in a sensor
network, where many nodes may simultaneously fail due to a
bomb attack or river overflow.

It is notable that the region failure models adopted in
previous region failure-related studies, like the single circular
model in [16]–[18], [20], [28] and line cut model in [19]–
[21], can be regarded as a kind of “deterministic” failure
models in the sense that any network component intersecting
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with the concerned failure region will always be destroyed
(i.e., destroyed with probability 1). However, the real physical
attacks (such as physical bomb explosion and electromagnetic
pulse (EMP) attack) or natural disasters (such as earthquake,
hurricane and flood) rarely have a deterministic nature. The
probability that a network component is affected by an attack
depends on various factors, like the distance from the attack
center to the component, the topography of the area around
the component, the component’s specifications, etc. In light
of the fact that such attacks have probabilistic rather than
deterministic effects on network components, a probabilistic
failure model would be more suitable for network reliability
study under such attacks. In fact, the probabilistic region
failure model has been recently employed for the reliability
study of WDM backbone networks [25]. In [25], Agarwalet
al. considered a simple probabilistic failure model, in which
network components within the impact radius of the disaster
fail with a fixed probability while other components further
away do not fail.

The “deterministic” failure models in [16]–[20], [20], [21],
[28] and the probabilistic model in [25], although simple and
easy to use, neglected two key facts of real-world region
failures: network components can only be destroyed with
certain probability (not always probability 1), and more im-
portantly, such failure probability of a network component
tends to monotonously decrease as it is farther away from
the region center. Based on this observation, we believe a
“probabilistic” model addressing these two key features will be
much more suitable for network reliability study. In this paper,
we consider such a probabilistic failure model and apply it to
assess the reliability of wireless mesh networks. Actually, a
similar model has just been proposed recently in [26] for the
reliability study of WDM optical backbone networks, where
each optical fiber link is treated as a compound component
consisting of consecutive amplifiers and the failure probability
of an amplifier there is determined by its distance to attack
center. The main contributions of this paper are as follows:

• We provide a general and more realistic probabilistic
region failure model to capture the key features of region
failures, which covers the deterministic failure models in
[16], [20] as special cases.

• Based on the new failure model, we formulate the ex-
pected flow capacity degradation problem in wireless
mesh networks as a network zone partition problem,
which is hard to solve for a large network. We then
develop a grid partition scheme to efficiently estimate the
expected flow capacity degradation from a random region
failure. The grid partition technique can also help us to
identify the vulnerable zones of a network.

• A theoretical framework is further established to analyze
the estimation error from using the grid partition tech-
nique, which can guide us to determine a suitable grid
partition such that a specified estimation error require-
ment is satisfied.

• We demonstrate through extensive theoretical and simu-
lation studies that neglecting probabilistic behavior of a
region failure may significantly over-estimate or under-

Fig. 1. Probabilistic Region Failure Model

estimate its impact on network reliability.

The rest of this paper is outlined as follows. Section II in-
troduces the general probabilistic region failure model and the
problem formulation of expected flow capacity degradation.
In Section III, we develop a grid partition scheme to estimate
the average performance degradation caused by a random
region failure, and also provide the theoretical analysis on
the estimation error from using such grid partition. Section IV
presents the numerical results to validate the new region failure
model and the grid partition scheme. Finally we conclude this
paper in Section V.

II. M ODEL AND PROBLEM FORMULATION

In this section, we first define a general probabilistic region
failure model, then formulate the expected flow capacity
degradation from such a failure as a network zone partition
problem.

A. Probabilistic Region Failure Model

It is notable that one common feature of real-world attacks
(like the physical bomb explosion, E-bomb or EMP attack)
is that the power of such an attack gradually attenuates from
its center area to outer area. Due to this common feature, the
region failures caused by such attacks always share two com-
mon behaviors, i.e., a network component near attack center
will fail with high probability (may not always probability1),
and such failure probability tends to monotonously decrease
as it is farther away from the attack center.

To emulate these common failure behaviors, we introduce
here a general probabilistic region failure model.

Definition 1: (Probabilistic Region Failure Model) con-
sists of a set ofM consecutive annulus, defined byM
concentric circles with radiusri, i = 1, . . . ,M , as illustrated
in Fig. 1. A network component (like a network node) falling
within i-th annulus will fail with probabilitypi, where annulus
are sequentially numbered from the failure center. To mimic
the above behaviors, the following properties hold forpi:

- The probabilitypi is monotonously decreasing, i,e,pi ≥
pi+1, i = 1, . . . ,M − 1.

- The region failure is only confined within the circle area
of radius rM , beyond which the failure probability is
regarded as 0.
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It is noted our probabilistic region failure (PRF) model is
different from the previous “deterministic” failure models in
the sense that: 1) it is more general as it covers the former
single circular model in [16], [20] as a special case ; 2) it
is more realistic as it reflects the monotonously decreasing
trend of failure probability for real region failures; 3) itis
more flexible and can be configured with different parameter
settings to adapt to various realistic scenarios.

Remark 1:The PRF model aims at characterizing network
component failures caused by large region physical attacks
(such as physical bomb explosion and electromagnetic pulse
(EMP) attack) or natural disasters (such as earthquake, hurri-
cane and flood). Under such a region failure, multiple network
components (nodes) may simultaneously corrupt but they are
geographically correlated and constrained within a specific
region. It is notable that, however, under some kind of net-
work attacks, the induced network failures may be temporary
and not permanent, and the affected network nodes may be
geographically independent and may not be constrained in a
specific region. Further, the attacker may just attack the data
traffic of the compromised node without physically destroying
the node. This kind of network attacks are beyond the scope
of this paper, and some related work can be found in [29],
[30].

Remark 2:For the simplicity of analysis, the PRF model
here assumes that the failure probability of a component is
only determined by its distance to the failure center while
neglecting the effects from other issues, like the component’s
protection issue, component’s specification issue, the topogra-
phy issue, etc.

Without loss of generality, in the following we focus on
the simple two-annulus PRF model withM = 2, p1 = 1 and
p2 = p to simplify the presentation1.

B. Problem Formulation

Based on the above PRF model, we will assess the reliability
of a wireless mesh network under single random region failure.
In this paper, we choose to explore the impact of region failure
upon some specified key flows (like some mission critical
flows), and take the expected flow capacity degradation as the
network reliability metric2. Here, the expected flow capacity
degradation is measured over all concerned flows after region
failure happens but before initiating the network recovery
mechanism, so it indicates the possible worst case performance
degradation after a region failure. This problem can be defined
as follows.

Expected Capacity Degradation Problem: For a given
network and the routing/capacity information of some specified
flows in it, calculate the expected capacity degradation of these
flows under a random region failure.

To solve the Expected Capacity Degradation (ECD) prob-
lem, one straightforward approach is to first apply the PRF

1For a small area around the region failure center, the failureprobability
there can be high enough to be approximated as 1.

2Some other metrics can also be adopted for network reliabilityevaluation,
like the vertex based degree centrality [31], the operational O-D pairs or paths,
the minimum shortest paths [32]–[34], the critical vertex/edge [35]–[37] and
pairwise connectivity [38].

Fig. 2. RFL zones{Zi} and their impacts{wi} of a flow

model to partition the overall network area into some disjoint
and uniform region failure location (RFL) zones.

Definition 2: (RFL Zone) A RFL zone is a network sub-
area that any PRF with center falling within it will always
induce the same impact (i.e., the same flow capacity degrada-
tion) to all the concerned flows.

For a simple scenario of having only one flowf with
capacityCf and 3 nodes, such RFL zone partition is illustrated
in Fig. 2, where the network region is divided into different
RFL zones{Zi} with impacts{wi}, i = 1, ..., 10.

Based on the area of each RFL zone and its impact on
flow capacity degradation, we can easily evaluate the overall
ECD of all concerned flows under a random region failure.
For a network with coverage areaZ, suppose we have already
divided network region into different RFL zones{Zt} with
different areas{|Zt|} and impacts{wt}, then the overall ECD
w can be determined as

w =
∑

Zt

|Zt|

Z
· wt (1)

Here |Zt|/Z is just the probability that the PRF’s center falls
within the RFL zoneZt.

To apply (1) for the evaluation of ECD, we need to find
out all the RFL zones. Such RFL zones depend on many
factors, like the node topology distribution (e.g., distance
among nodes, number of nodes), flow distribution (routing
path for each concerned flow, number of nodes per flow),
and also parameter settings of the PRF model (M and ri,
i = 1, . . . ,M ). Suppose the number of nodes of all concerned
flows is N , then we can see that total number of RFL zones
can be as high asO((M+1)N ) in the worst case. Also, finding
all these RFL zones and calculating their area involve a lot of
very complicated geometric operations. In the next sectionwe
present an efficient scheme for the estimation ofw.

III. E STIMATION OF ECD

In this section, we first introduce a grid partition-based
scheme for the estimation of ECD, then provide a theoretical
analysis on the estimation error from using such grid partition
technique.
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A. Grid Partition-based Estimation for ECD

Without loss of generality, we assume that the network
coverage area is anb × b square. We apply a grid to evenly
divide theb×b square intoc×c small cells{Sj , j = 1, ..., c2}
with side lengtha = b/c each, as illustrated in Fig. 3. Based
on this grid partition, one simple way to estimate the ECD of
some concerned flows is to regard each cell here as a “RFL”
zone and take the impact of its center point as the impact of
this cell. In this way, we can get an estimation of ECD based
on the Eq. (1).

Suppose that the set of concerned flows are{fk, k =
1, ...,K}, and let(x∗

j , y
∗
j ) be the central point ofjth cell Sj ,

and letwfk
(x, y) be the induced impact on flowfk when PRF

center is at point(x, y). Then the grid partition-based scheme
for obtaining an estimation̂w of ECD can be summarized as
the following Algorithm 1.

Algorithm 1 ECD Estimation:
Input: The network grid partition information, flow distribu-
tion and failure model parameters;
Output: ECD estimationŵ;

1. ŵ ⇐ 0;
2. for k = 1 to K do
3. for j = 1 to c2 do
4. calculatewfk

(x∗
j , y

∗
j );

5. ŵ = ŵ + (a2/b2) · wfk
(x∗

j , y
∗
j );

6. end for
7. end for
8. return ŵ;

In the Algorithm 1, we take the central point(x∗
j , y

∗
j )

of cell Sj as the sampling point and simply use its impact
wfk

(x∗
j , y

∗
j ) as an approximation of the impact of all other

points in Sj . Since each cell here may not be a RFL zone,
such approximation will cause an estimation error between
ŵ and w. For a flow with two nodes and capacityCf , a
partition cell Sj that intersects with three RFL zones there
is illustrated in the Fig. 3. Notice that the three RFL zones
intersecting withSj have distinct impacts of 0,p · Cf and
(1 − (1 − p)2) · Cf , respectively. Thus, talking the impact
p ·Cf of the center(x∗

j , y
∗
j ) of Sj as an approximation of the

impacts of all other points (can be 0 or(1 − (1 − p)2) · Cf

here) will induce estimation error in the calculation of ECD
w.

In the next subsection, we provide a theoretical model on the
possible estimation error that the Algorithm 1 may introduce
in the estimation ofw. Such a model can help us to determine
a suitable grid partition (i.e., a suitable cell sizea) such that
a specified estimation error requirement is satisfied.

B. ECD Estimation Error Modeling

Based on the grid partition introduced above, the ECDw
and its estimation̂w for the set of concerned flows{fk, k =

Fig. 3. Illustration of network grid partition and ECD estimation error for a
flow with only two nodesA andB. The cells of cases 2 and 3 will introduce
ECD estimation error while the cells of cases 1 and 4 will not.

1, ...,K} can be expressed as

w =
1

b2
·

K
∑

k=1

c2

∑

j=1

∫∫

(x,y)∈Sj

wfk
(x, y)dxdy (2)

ŵ =
1

b2
·

K
∑

k=1

c2

∑

j=1

∫∫

(x,y)∈Sj

wfk
(x∗

j , y
∗
j )dxdy (3)

If we use∆ to denote the estimation error ofw, then we
have

∆ = |w − ŵ|

≤
K

∑

k=1

∣

∣

∣

1

b2

c2

∑

j=1

∫∫

(x,y)∈Sj

(

wfk
(x∗

j , y
∗
j ) − wfk

(x, y)
)

dxdy
∣

∣

∣

(4)

The (4) indicates that the overall estimation error∆ is no more
than the sum of estimation error for the ECD of each flow.
If we use∆fk

to denote the estimation error for the ECD of
flow fk, then we have

∆fk
=

∣

∣

∣

1

b2

c2

∑

j=1

∫∫

(x,y)∈Sj

(

wfk
(x∗

j , y
∗
j ) − wfk

(x, y)
)

dxdy
∣

∣

∣

(5)

≤

c2

∑

j=1

∣

∣

∣

1

b2

∫∫

(x,y)∈Sj

(

wfk
(x∗

j , y
∗
j ) − wfk

(x, y)
)

dxdy
∣

∣

∣

(6)

The (6) says that the estimation error∆fk
for flow fk is

upper bounded by the sum of corresponding estimation error
introduced in each cell. If we use∆Sj

fk
to denote the maximum

difference between the average impact (onfk) of any two
points inSj , i.e.,

∆
Sj

fk
= max

(x,y)∈Sj

{wfk
(x, y)} − min

(x,y)∈Sj

{wfk
(x, y)} (7)
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then we have
∣

∣

∣

1

b2

∫∫

(x,y)∈Sj

(

wfk
(x∗

j , y
∗
j ) − wfk

(x, y)
)

dxdy
∣

∣

∣

≤
1

b2

∫∫

(x,y)∈Sj

∣

∣

∣
wfk

(x∗
j , y

∗
j ) − wfk

(x, y)
∣

∣

∣
dxdy

≤
1

b2

∫∫

(x,y)∈Sj

∆
Sj

fk
dxdy

=
1

c2
∆

Sj

fk
(8)

Combining (4), (5), (6) and (8), we have

∆ ≤
K

∑

k=1

∆fk
≤

K
∑

k=1

c2

∑

j=1

1

c2
∆

Sj

fk
(9)

The (9) shows that we can control the overall estimation
error ∆ by properly selecting the number of cellsc (or
equivalently the sizea = b/c of each cell) in the grid-
partition based ECD estimation. LetCk denote the capacity
of concerned flowfk, k = 1, ...,K, then we can define the
following ECD estimation error bounding problem.

ECD Estimation Error Bounding Problem: For an error
requirementǫ > 0, to determine a low boundcǫ on the number
of cells c, such that whenc > cǫ we can always guarantee
that

∆ ≤

K
∑

k=1

c2

∑

j=1

1

c2
∆

Sj

fk
≤ ǫ ·

K
∑

k=1

Ck (10)

The (10) indicates that to determine the lower boundcǫ for
a givenǫ, we need to identify each cell that has non-zero term
∆

Sj

fk
(i.e., the cell that introduces estimation error) and also to

determine the total number of such cells, as discussed in the
following subsections.

C. Identification of Cells with Estimation Error

Based on the simple two-annulus PRF model introduced
in Section II-A, we can easily see that the area around a
network node can also be divided into two same annulus (as
shown in Fig. 3), where a PRF with center falling within the
inner annulus (resp. the outer annulus) will cause the node
to fail with probability 1 (resp. probabilityp). Thus, for a
given flow fk, whether a cell will introduce ECD estimation
error for this flow depends on how the cell intersects with
the boundaries of the outer annulus and inner annulus of all
the nodes of this flow (hereafter, we call these annulus as
the annulus of this flow). To characterize such intersection
between a cellS and the annulus of flowfk, we define a four-
tuple (mk, nk, hk, gk), which indicates that the cell partially
intersects with the boundaries ofmk outer annulus andhk

inner annulus of flowfk, but it completely falls within other
nk outer annulus andgk inner annulus of the flow.

Based on the four-tuple(mk, nk, hk, gk) for flow fk and a
cell S, the ∆S

fk
defined by (7), i.e., the maximum difference

between the average impact (onfk) of any two points inS,

can be determined as

∆S
fk

=







































0 case 1: ifgk ≥ 1,

Ck · qnk

case 2: ifgk = 0, hk ≥ 1,

Ck · qnk ·
(

1 − qmk
)

case 3: ifgk = 0, hk = 0,mk ≥ 1,

0 case 4: ifgk = 0, hk = 0,mk = 0.

(11)

where q = 1 − p is the non-failure probability of a node
falling within the outer annulus defined by the simple two-
annulus PRF model in Section II.A. The (11) indicates clearly
that only the cells of the cases 2 and 3 will introduce ECD
estimation error for the flowfk, as illustrated in the Fig. 3.

Let uk(λ) denote the total number of cells of the case2
with nk = λ, and letvk(β, γ) denote the total number of cells
of the case3 with mk = β andnk = γ, then the overall ECD
estimation error for the flowfk is given by

c2

∑

j=1

1

c2
∆

Sj

fk

=
Ck

c2
·
(

∑

λ≥1

uk(λ)qλ +
∑

β≥1,γ≥0

vk(β, γ)
(

1 − qβ
)

qγ
)

(12)

D. Counting the Cells with Estimation Error

The (10) and (12) indicate that to solve the overall esti-
mation error bounding problem, we need to determine the
values ofuk(λ) and vk(β, γ) for each flowfk with λ ≥ 1,
β ≥ 1 and γ ≥ 0. However, determining the exact value of
uk(λ) and vk(β, γ) for each flowfk is still a very difficult
task, which involves the complicated geometric operation to
identify the relationship (intersecting or containing) between
cells and annulus boundaries of a flow. We instead provide
here a tractable upper bound to efficiently approximate the
ECD estimation error in (12).

Notice from the Fig. 3 that the effect of a PRF upon a
network node is defined by the two annulus around the node,
and our basic idea here is to first derive a general “node-
level estimation error” for each node of flowfk based on the
intersection between its two annulus and cells around the node,
then apply the node-level estimation error of each node to get
a general bound on the ECD estimation error of this flow.

To get a general node-level estimation error for each node,
we need to identify all the cells around a node that will
“contribute” to the ECD estimation error. For this purpose,we
consider a tagged nodeA and one its neighbor nodeB that is
dmax away, as illustrated in Fig. 4. Here thedmax is defined
as the maximum distance between any two neighbor nodes of
any flow, which is controlled by the maximum communication
range (or power) of the network. We useC

A
in and C

A
out, C

B
in

andC
B
out to denote the inner annulus and outer annulus ofA

and B, respectively. Then the cells that may introduce ECD
estimation error to the nodeA can be defined by the following
variables:
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Fig. 4. Illustration for the cell counting, where the distance between the
nodesA and B is fixed asdmax, and the network is partitioned with cells
of sizea each.

• v̄1: the number of cells partially intersecting with the
boundary of C

A
out but not completely falling within

C
B
in ∪ C

B
out.

• v̄2: the number of cells partially intersecting with the
boundary ofCA

out and completely falling withinCB
in ∪

C
B
out.

• ū1: the number of cells partially intersecting with the
boundary ofCA

in but not completely falling within the
C

B
in ∪ C

B
out.

• ū2: if ū1 > 0, ū2 is defined as the total number of
cells that partially intersect with the boundary ofC

A
in

and completely fall within theCB
in ∪ C

B
out. In the case

ū1 = 0, ū2 is the number of cells that partially intersect
with the boundary ofCA

in and not completely fall within
the C

B
in.

For the example shown in Fig. 4, we can easily prove that
the ū1, ū2, v̄1 andv̄2 there are given by the formulas in Table I
and II.

Remark 3:The values of̄u1, ū2, v̄1 and v̄2 in Tables I and
II are only determined by the network parametersdmax, r1

andr2 and thus independent of flows.
Remark 4:For the tagged nodeA and its neighbor node

B in Fig. 4, the boundaries of their outer annulus are not
intersecting with the network boundary. Thus, the results in
Tables I and II represent the maximum values ofū1, ū2, v̄1

and v̄2.
Based on thēu1, ū2, v̄1 and v̄2 in the Tables I and II, we

can defineNEEk (i.e., the node-level estimation error for
each node of flowfk) as

NEEk =
Ck

c2
·
(

ū1q + ū2q
2 + v̄1p + v̄2pq

)

(13)

We now show that theNEEk can be used to establish an
upper bound for the overall ECD estimation error (12) of the
flow fk, as summarized in the following lemma (See Appendix
for the proof).

Lemma 1:Given the PRF model parametersr1 andr2, cell
side lengtha, then for any flowfk with Nk nodes,1 ≤ k ≤ K,

TABLE I
ū1 AND ū2

TABLE II
v̄1 AND v̄2

dmax v̄1 v̄2

dmax ≤ 2r2 4⌈ 2r2

a
⌉ − v̄2 4⌈ 2r2

a
⌉ 1

π
arccos

dmax

2r2

dmax > 2r2 4⌈ 2r2

a
⌉ 0

we have

Ck

c2
·
(

∑

λ≥1

uk(λ)qλ +
∑

β≥1,γ≥0

vk(β, γ)
(

1 − qβ
)

qγ
)

≤ Nk · NEEk (14)

E. A Lower Bound for Estimation Error Guarantee

By combining the (10), (12) and (14), we can easily prove
the following theorem regarding a lower boundcǫ of c for a
specified error requirementǫ.

Theorem 1:For a specified error requirementǫ > 0, we can
determine a lower boundcǫ for c as follows such that when
c ≥ cǫ, the (10) always holds.

1) whendmax ≤ r2 − r1 & r2 ≤ 3r1, or dmax ≤ 2r1 &
r2 > 3r1,

cǫ =
8

ǫπb
∑K

k=1 Ck

×

K
∑

k=1

NkCk

(

r1(π − arccos
dmax

2r1
)(1 − p)2

+ r2(π − p arccos
dmax

2r2
) · p

)

(15)

2) when2r1 < dmax ≤ r2 − r1 & r2 > 3r1,

cǫ =
8

ǫπb
∑K

k=1 Ck

K
∑

k=1

NkCk

(

r1π(1 − p)2

+ r2(π − p arccos
dmax

2r2
) · p

)

(16)

3) whenr2 − r1 < dmax ≤ r2 + r1,

cǫ =
8

ǫπb
∑K

k=1 Ck

×

K
∑

k=1

NkCk

(

r1(π − arccos
d2

max + r2
1 − r2

2

2dmaxr1
)(1 − p)

+ r1 arccos
d2

max + r2
1 − r2

2

2dmaxr1
(1 − p)2

+ r2(π − p arccos
dmax

2r2
) · p

)

(17)
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4) whenr2 + r1 < dmax ≤ 2r2,

cǫ =
8

ǫπb
∑K

k=1 Ck

K
∑

k=1

NkCk

(

r1π(1 − p)

+ r2(π − p arccos
dmax

2r2
) · p

)

(18)

5) whendmax > 2r2,

cǫ =
8

ǫb
∑K

k=1 Ck

K
∑

k=1

NkCk

(

r1(1 − p) + r2p
)

(19)

IV. N UMERICAL RESULTS

In this section, we first verify the efficiency of the ECD
estimation scheme through simulation, then apply it to assess
the network reliability under the new PRF model.

A. Simulation Setting

We developed a simulator in C++ to simulate the impact
of a random PRF upon on some specified flows. Similar to
the settings used in [16], we consider a random network with
32 nodes, in which the coordinates (x, y) of each node are
uniformly generated in a2000× 2000 m2 field. We randomly
generate eight flows, where the number of nodes per flow is
drawn randomly in[3, 5], each link distance is drawn randomly
in [100, 400] m, and the flow capacity is drawn randomly in
[3, 10] Mbps. The final network graph for simulation is shown
in Fig. 8a, in which the maximum distance between any two
neighbor nodes of any flow is determined asdmax = 360.555.
The metric adopted for performance evaluation is the average
impact ratio, defined as

AIR =
w

∑K
k=1 Ck

(20)

The simulated average impact ratio was calculated as the
average value of ten batches of simulation results, where
each batch consists of one million random and independent
simulations.

B. PRF Model and “Deterministic” Failure Models

To illustrate how the general PRF model is different from
the “Deterministic” failure models, we first conducted a sim-
ulation under the general parameter setting for(p1, p2). The
Fig. 5 illustrates the variations of average impact ratio with the
parameters(r1, r2, p1, p2), where the settings(p1 = 1, p2 = 1)
and(p1 = 1, p2 = 0) correspond to the “deterministic” model
scenarios.

The results here indicate clearly that the “deterministic”
models, although simple and easy to use, may result in
a significant overestimation or underestimation of network
reliability. For example, when we setr2/r1 = 3.6 in Fig. 5a,
we get an average impact ratio of0.102 with the setting of
(p1 = 0.95, p2 = 0.25), while this ratio decreases to0.032
with the setting of (p1 = 1, p2 = 0). Regarding the results
of fixed r2/r1 in Fig. 5b, we can see that whenr1 = 80,
the average impact ratio is estimated as0.116 for the case
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Fig. 5. PRF Model and “Deterministic” Failure Models.

(p1 = 0.95, p2 = 0.75), and this estimated ratio increases to
0.141 when bothp1 andp2 are regarded as 1 there. It is also
interesting to note that asr1 (or r2/r1) increases (and thus
failure region becomes bigger), the estimation gap between
the probabilistic model and the corresponding “deterministic”
ones tends to increase sharply, and such gaps can be very
significant if the probabilistic feature of region failure is not
properly “rounded-off”.

C. ECD Estimation Scheme Validation

To verify the ECD estimation scheme, further simulation
was conducted under the simple PRF model of (p1 = 1, p2 =
p). The parameters used in the simulation are summarized
in Table III, where each case of parameter setting is corre-
sponding to one individual case discussed in the Theorem 1.
We verified the ECD estimation scheme under two error
requirements ofǫ = 0.01 and ǫ = 0.005. The corresponding
simulation results and estimation results from our scheme are
summarized in the Table IV.

The Table IV indicates clearly that when we setc ≥ cǫ, our
scheme could provide an efficient estimation for the average
impact ratio, and the induced overall estimation error is always
less than the specifiedǫ. It is also notable that for each
test case here, the actual error between the simulation and
estimation results is several orders smaller than the specified
ǫ. This very small overall estimation error (and thus a very
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TABLE III
FAILURE MODEL PARAMETER SETTINGS

p r1 r2

case 1 0.50 50 100
case 2 0.35 80 200
case 3 0.25 100 500
case 4 0.75 180 200
case 5 0.15 200 600
case 6 0.10 200 700

TABLE IV
COMPARISON BETWEEN SIMULATION AND ESTIMATION RESULTS FOR

MODEL VALIDATION , C =
∑

8

k=1
Ck

w/C ŵ/C ∆/C cǫ

case 1 ǫ = 0.01 0.0201332 0.0200634 6.98e-005 126
ǫ = 0.005 0.0201248 0.0201419 1.70e-005 252

case 2 ǫ = 0.01 0.05511 0.0550707 3.93e-005 199
ǫ = 0.005 0.0551315 0.0551305 1.03e-006 398

case 3 ǫ = 0.01 0.160276 0.160349 7.28e-005 284
ǫ = 0.005 0.160279 0.160315 3.62e-005 569

case 4 ǫ = 0.01 0.106664 0.106649 1.47e-005 295
ǫ = 0.005 0.106683 0.106636 4.70e-005 590

case 5 ǫ = 0.01 0.193783 0.193646 1.36e-004 350
ǫ = 0.005 0.193819 0.19378 3.96e-005 701

case 6 ǫ = 0.01 0.189801 0.18987 6.90e-005 346
ǫ = 0.005 0.189838 0.189847 9.57e-006 693

safe cǫ) are due to the following factors. The first factor is
that the maximum possible estimation error (rather than the
real estimation error) of each cell is adopted in the evaluation
of the overall ECD estimation error (Eq. 12). The second factor
lies in the estimation of the number of error-inducing cellsin
(13), in which only the maximum values for̄u1 and v̄1 are
considered, while the errors of other cells are approximated
throughū2 andv̄2. The last factor is that the distance between
any two neighbor nodes is always regarded asdmax in the
Theorem 1, which helps us to derive an unified and closed
form formula for cǫ but leads to an overestimation for the
parameter.

The above results indicate that our ECD estimation scheme
and the related theoretical framework for estimation error
bounding, although may lead to a “conservative” estimation
for the overall ECD, are simple and efficient. To apply such
scheme, we just need to divide the network area intoc × c
cells and simply use the central point of each cell to calculate
the ECD metric, which avoids the complicated geometric
operations for the identification and area evaluation of all
RFL zones. As long as the cell sizea is small enough (or
equivalently the number of cellsc is big enough such that
c ≥ cǫ), our scheme can always result in a very efficient
estimation for the ECD with an error upper bounded byǫ.

Hereafter, the numerical results in performance evaluation
are obtained based on our ECD estimation scheme, where
the simple PRF model of (p1 = 1, p2 = p) and an error
requirement ofǫ = 0.005 are assumed.

D. Average Impact Ratio vs. Failure Model Parameters

The Fig. 6 shows the relationship between the average
impact ratio and the failure probabilityp under different
settings ofr2/r1, where the settingr2/r1 = 1 corresponds to
a “deterministic” model. We can see from the Fig. 6 that with
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r1 = 100, a non-negligible difference between the average
impact ratio of r2/r1 > 1 (r2/r1 =2,4,5,7) and that of
r2/r1 = 1 can be observed even for a very small value of the
failure probabilityp. For example, whenp = 0.2, the average
impact ratio of the scenarior2/r1 = 2 is 0.050, which is nearly
1.56 times as that of the scenarior2/r1 = 1 (0.032 there); for
the case thatp = 0.35, the estimated ratio of the first scenario
(0.062) is nearly1.94 times as that of the later case (0.032).
The Fig. 6 also shows clearly that asr2 or p increase, the
difference between the average impact ratio ofr2/r1 > 1 and
that of r2/r1 = 1 increases sharply. This results indicates that
even for a very small failure probabilityp, the probabilistic
outer annulus part of a PRF may significantly affect the overall
network capacity.

When failure probability is set asp = 0.5, the relationship
between the average impact ratio andr2/r1 is illustrated in
the Fig. 7. We can see from the figure that in general, asr1

increases, the average impact ratio becomes more sensitive
to the variation of the ratior2/r1. For example, whenr2/r1

varies from 1.6 to 3.6, the estimated ratio for the scenario of
r1 = 100 varies from 0.056 to 0.159 and that for the scenario
of r1 = 200 varies from 0.162 to 0.404, respectively. The
results here also show clearly that for the caser1 = 450, the
average impact ratio is not sensitive to the variation ofr2/r1

anymore as it increases beyond the pointr2/r1 = 4.4. This is
because that whenr1 andr2 are large enough, the PRF starts
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(a) Network topology
(K = 8, dmax = 360.555)

(b) Vulnerable zone distribution
(r1 = 200, r2 = 600, a = 40)

Fig. 8. Network topology and vulnerable network zone distribution estimated
by our scheme.

to cover the whole network area and thus all the flows. A
more careful observation of the Fig. 7 indicates that even with
a PRF ofr1 = 360 (roughly same as thedmax = 360.555)
and r2/r1 = 2.4, we may achieve an over50% reduction
(i.e.,AIR > 0.5) to the overall capacity of the concerned
flows.

E. Vulnerable Network Zone Identification

In our grid partition-based ECD estimation scheme, we
divide the whole network area equally intoc × c cells, then
take the central point of each cell as the sampling point and
use its impact to approximate the impact of the cell. Thus,
one attractive application of the estimation scheme is thatit
helps us to identify the geographical distribution and sizeof
the vulnerable network zones.

For the network adopted in our study (Fig. 8a) and the
setting of (r1 = 200, r2 = 600, a = 40), the vulnerable
network zone distribution estimated by our scheme is illus-
trated in Fig. 8b. Based on such vulnerable network zone
distribution, one can also easily identify the most vulnerable
network zone(s), i.e., the zones in which each cell there hasthe
biggest impact to the network flow capacity. Such vulnerable
network zone distribution and the most vulnerable network
zone information will be helpful for network designers to ini-
tiate proper network protection strategy against region failures.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a more realistic probabilistic
region failure (PRF) model to capture some main features of
geographically correlated region failures, and then developed
a framework to apply the PRF model for the reliability
assessment of wireless mesh networks. Our framework can
be applied to estimate the worst case network performance
degradation from a PRF and also to identify the geographical
distribution and size of vulnerable network zones. Such pre-
assessment and evaluation can help network designers to
select suitable routing and protection strategies againstregion
failures and thus achieve a failure-resilient network design.
Our results indicate that neglecting some key properties of
real region failures can result in a significant overestimation
or underestimation of network reliability, which may mislead
network designers in initiating proper and cost-efficient net-
work protection against such failures. It is expected that our

work in this paper will contribute to the future network design
and planning against possible region failures.

Some possible extensions of this work are:
• Routing issue: Notice that our framework in this paper

can be applied to evaluate a network with a given routing
strategy. How to apply this work and the corresponding
results (like the vulnerable network zone distribution
information) to find efficient and region failure-tolerant
routing algorithm to alleviate the impacts of region failure
can be an interesting work.

• Recovery issue: We only considered the PRF impact
before network recovery (like topology reconfigure and
flow rerouting), so it only indicates the worst case net-
work performance degradation. How to extend this work
to estimate the network performance degradation (like
the flow capacity degradation) after network recovery
deserves further study.

• Reliability under other metrics: To have a more deeper
understanding of network reliability under PRF, another
future work is to extend the framework established in this
paper to further evaluate the network performance degra-
dation under other metrics, like the pairwise connectivity
[38], critical vertex/edge [35]–[37], etc.

APPENDIX

PROOF OF THELEMMA 1

Based on the (12) and (13) we know that to prove the (14),
we just need to show that for anyfk the following condition
holds

∑

λ≥1

uk(λ)qλ +
∑

β≥1,γ≥0

vk(β, γ)
(

1 − qβ
)

qγ

≤ Nk

(

ū1q + ū2q
2 + v̄1p + v̄2pq

)

(21)

From the discussion in Section III-C we know that only the
cells of cases 2 and 3 in (11) will introduce the ECD estimation
error. We first consider the first term regarding the case 2 cells
in the left side of (21), i.e., the term

∑

λ≥1 uk(λ)qλ. Since
thedmax is the maximum distance between any two neighbor
nodes of any flow, it is trivial to see thatuk(1) ≤ Nk · ū1.
Based on the definitions of̄u1 and ū2, and also notice thatqλ

monotonically decreases asλ increases, we have
∑

λ≥1

uk(λ)qλ ≤ Nk

(

ū1q + ū2q
2
)

(22)

Similarly, for the cells belonging to the case 3 in (11), we
have the following inequalities for anyfk

∑

β≥1

β · vk(β, 0) ≤ Nk · v̄1 (23)

and
∑

β≥1,γ≥1

β · vk(β, γ) ≤ Nk · v̄2 (24)

Now we consider the second term in the left side of (21),
i.e.,

∑

β≥1,γ≥0 vk(β, γ)
(

1−qβ
)

qγ , where the component(1−
qβ)qγ increases withβ but decreases withγ. Since some cells
of the case 3 are associated with a big value ofβ but a small
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value ofγ, we can not directly derive a similar inequality like
the (22) for the case 3 cells. For a case3 cell Sj counted
asvk(β, γ), its maximum estimation error, i.e., the maximum
difference between the average impact (onfk) of any two
points in it, is given by

∆
Sj

fk
= Ckqγ

(

1 − qβ
)

= Ckqγ

β
∑

i=1

(−1)

(

β

i

)

(−p)i

≤ Ckqγ · p · β

= Ckqγ
(

1 − q
)

· β (25)

Based on the (25), we first establish the following results
regarding the second term in the left side of (21) under the
special case thatβ ≥ 1 andγ = 0,

∑

β≥1

vk(β, 0)
(

1 − qβ
)

≤
∑

β≥1

vk(β, 0) · p · β (26)

=
∑

β≥1

β · vk(β, 0) · p

≤ Nk · v̄1 · p (27)

where inequalities (26) and (27) are due to the (25) and (23),
respectively.

We now show that for the general caseβ ≥ 1, γ ≥ 1, we
have

∑

β≥1,γ≥1

vk(β, γ)
(

1 − qβ
)

qγ

≤
∑

β≥1,γ≥1

vk(β, γ) · qγ · p · β (28)

≤
∑

β≥1,γ≥1

β · vk(β, γ) · q · p

≤ Nk · v̄2 · q · p (29)

where inequalities (28) and (29) are due to the (25) and (24),
respectively.

Combining the (27) and (29), the following inequality for
the cells of case 3 follows,

∑

β≥1,γ≥0

vk(β, γ)
(

1 − qβ
)

qγ ≤ Nk

(

v̄1p + v̄2pq
)

(30)

Finally, the (21) comes after the (22) and (30).
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