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Abstract—Smart grid (SG) presents the largest growth poten- (i.e., greater availability of power to homes and factords
tial in the Machine-to-Machine (M2M) market today. Spurred  |ower cost), and will allow distributed power generatiorcisu
by the recent advances in the M2M technologies, the smart 44 |nca) solar and wind generators. It will reach into home-
meters/sensors used in smart grid are expected not to require based devi d theref in addition t |ability fast
human intervention in characterizing power requirements and ase Fj‘V'C_eS, an ) ere Ore,'ln adaiuon to SCf':la ilityfam
energy distribution. These numerous sensors are able to report COMMunication, serious attention should be paid towardstsm
back the information such as power consumption and other grid security [4]. Since smart grid communication is going
monitoring signals. However, SG, as it comprises an energy con-to be based on current networking technologies, the same

trol and distribution system, requires fast response to malicious ; ; ;
> ’ ; ! security concerns often encountered in conventional nétsvo
events such as Distributed Denial of Service (DDoS) attacks y

against smart meters. In this article, we model the malicious will a_lsc’. be prevale.nt In SmarF grid. In fact, cyber threa_lsrs
and/or abnormal events, which may compromise the security and as Distributed Denial of Service (DDoS) attacks are likely t
privacy of smart grid users, as a Gaussian process. Based on thishave more impact on smart grid communication because of the
model, a novel early warning system is proposed for anticipating involvement of so many electrical equipments on the consume

malicious events in the SG network. With the warning system, gjqe By means of early forecasting of malicious threats to
SG control center can forecast such malicious events, thereby

enabling SG to react beforehand and mitigate the possible smart gri_d, it may be p0$5ib|e to take QUiCK measure to protec
impact of the malicious activity. We verify the effectiveness the appliances from being compromised by the attacker. To
of the proposed early warning system through computer-based establish such a forecasting framework, however, we need to

simulations. consider the fact that humans are not supposed to interiére w
Index Terms—Smart Grid, Early Warning System, Machine- M2M communication. Instead, the machines within the smart
to-Machine (M2M) communication. grid should have an adequate framework to predict or warn

about malicious events, abnormality, and failuagsriori. The
machines in the smart grid can be found in different types
of networks, such as home-network, building network, and
T HERE is a high expectation recently on the Machine-tghe neighborhood-wide network. The smart meters deployed

Machine (M2M) communications over wired and wirein these different networks may be utilized to form an in-
less links. Various applications of M2M have already starteormation sharing network. Such an information sharing can
to emerge in various sectors such as healthcare, vehicdlargovide an important resource for developing global anéjm

hoc networks, smart home technologies, and so on [1]. TR§sessments of emerging malicious threats against snirt gr
evolution of M2M has also begun in developing a smart powebmmunication.

grid framework, referred to as the smart grid (SG) [2], [3].

An electric grid having smart or intelligent capability@lls  While smart meters should authenticate other smart meters
the power providers, distributors, and consumers to miaintand devices, the authentication scheme itself can be &tget
a near real-time awareness of their respective operating B DDoS attackers. In this article, we consider the spread
quirements and capabilities. Through this awareness, tSmgf worm in the smart grid that compromises a number of
grid is able to produce, distribute, and consume power fachines (i.e., smart meters, electrical appliances)chvhi
the most effective manner. This type of communication tak@gart sending malicious authentication requests to vistinart
place only amongst machines such as sensors, smart met@egers. Such cases observed in a smart grid network are
and other equipments. Therefore, the M2M communicatiofgtified to its hierarchically above network, which in turn
in smart grid require to be private and secure since magynveys the information to the smart grid control center.
of the autonomic functions that will run over it will bEBy modeling the malicious attack event through a Gaussian

critical. Smart grid is usually portrayed to have numerousrocess, the control center can forecast occurrence ofefutu
electrical appliances connected with one another in a c&npkvents in the smart grid networks.

manner so that they can report back on information such

as power consumption and other monitoring signals. ThisThe remainder of the article is organized as follows. Sec-
promises higher efficiency in the power distribution neteor tion || presents related work in early prediction of network

) threats. Section IIl describes the considered architector
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I. INTRODUCTION



Il. RELATED RESEARCHWORK requirements than those of the power lines. The transnissio
the science of prediction has been ported %Hbstatlon and the control centers of the distribution tsubs

Recently, _ .
SmartGrid research field. It has been revealed that accurdps'S areé connected with one another in a meshed network,

real-time load forecasting is essential for reliable aslael WhiCh can be built over optical fiber technology. The remain-
efficient operation of a power system [5]. This work utilized!d components of the considered SG communication topology
the accurate reporting of the emerging Advanced Meteritgy divided into a number of ne‘gworks, which feature rea;—hf
Infrastructure (AMI) to track the incoming load request's:’_et'Ups of a city or a metropolltan area. Broadly speakllng,'a
from Plug-in Hybrid Electric Vehicles (PHEVs). It showsCity has @ number of regions (e.g., wards), each of which is
the benefits of the smart use of AMI data in generaticfPvered by a distribution substation. Every region congsris
planning and load forecasting. Also, Waeg al. introduce §everal neighborhoods, each neighborhood has many build-

a data forecasting scheme for determining the electriity ¢ IN9S: @nd each building may have a number of apartments.
sumptiona priori [6]. This scheme uses three-point GaussiaW_e de”V? our smart grid communication architecture from
quadrature approach to construct the forecasting model. S real-life planning of a metropolitan area as follows.

similar approach for predicting power use has also been! e communication architecture for the lower distribution

developed in [7]. This work introduces an extension of kern@etwork (beneath the control center) is divided into a numbe
regression based on local models which is mentioned to Behierarchical networks, namely Neighborhood Area Networ
appropriate for large-scale data mining scenarios in sgratt  (VAN), Building Area Network (BAN), and Home Area

A detailed survey is presented in the work by Alfaresal. Network (HAN). This is, in spirit, s_imilgr to the smart grid
that demonstrates the application of different technigues SYStem model and processes described in the work by Neyato

forecast loads in power grids [8]. The surveyed approach®s [10]- Each NAN can be considered to be composed of a

consist of multiple regression, exponential smoothirggaiive "Umber of BANS. On the other hand, every BAN contains a
re-weighted least-squares, stochastic time series, anzhso number of apartments. The apartments have their respective

The survey also highlights the trend that hybrid mechanisd?2! area networks, each of which is referred to as a HAN.
are required to forecast events in power grid that combire tAl' 2ddition, there are advanced meters called smart meters
or more of these techniques. deployed in the smart grid architecture that represent AMI
Note that the afore-mentioned works works only consid&p! €napling an automated, two-way communication between
the smart grid power consumption information and do n(I)tPe Ut'“t,y meter. and the utility P“’V'der- The.smgrt meters
investigate whether such models can be effectively employ@r% equipped with two interfaces) (pO\;ver rearc]hng interface
for forecasting abnormal events in the smart grid power diénd ) communication gateway interface. The smart meters
tribution and/or communication networks. Although Gaassi used in NAN, BAN, and HAS‘ are referred to as INAN
processes have been considered in many learning scemarioS V. (GateWay), BAN GW, and HAN GW, respectively. In
literature [9], they have not been utilized in learning afonal ad,d't_'on’ it is also worth meptlonlng that based upon the
modes of operation in smart grid. In this article, we sirr)plifex's“ng standards of smart grid, Inter_net Protocol (IE$_&1}I
the modeling of Gaussian process in smart grid communicatig®Mmunication r'ls preferred to allo(;/v virtually effortlesger-
for predicting malicious events, which may disrupt the smafonnections with HANs, BANs and NANS.

meters.
A. Neighborhood Area Network — NAN

I1l. SMART GRID COMMUNICATION ARCHITECTURE A NAN is a localized network of the considered SG

This section covers the basics of smart grid communicaticommumcatlon topology. A NAN comprises one or more

architecture. The smart grid power transmission and Histri 35 (Third Generation) base stations and a number of BANS.
' gne p Notice that the 3G framework used for smart grid commu-

tion system delivers power from the power plant to end-users _ . L
o . ...~ mications should be different from the existing ones used fo
through a transmission substation and a number of disiitout . . .
. . . : providing other services, e.g., Internet. This should baedo
substations. The transmission substation delivers porwoen f : . o
i R in order to prevent network congestion. Also, it is possible
the power plant over high voltage transmission lines (gaihyer avoid security threats arising from the Internet that mayeha
over 230 kilo volts) to distribution substations, which aré Y g

placed in different regions. Distribution substations on- impact on the delay-sensitive SG communications. It should
! : I be noted also that other modes of communications apart from

3G may be alternative solutions for this purpose. The NAN

levels, and distributing this medium-voltage level power t . . : o
the building-feeders. To make it usable by the consumees, t%w can monitor how much power is being distributed to a

building feeders have to convert the medium voltage leviel inparticula_\r neig_hborhood l?y the corresponding control eent
at the distribution substation.

a lower level.

Our considered smart grid communication system is sepa- =
rated from the power transmission and distribution systmd, B- Building Area Network — BAN
can be viewed as an information sharing network comprising Every building connected to the smart power grid maintains
a number of hierarchical components as illustrated in Fig. its own BAN. A BAN consists of a number of apartments
For communication, however, the above consideration may rfiaving HANs. The BAN smart meter/GW is typically set up
be applicable since the communication links have differeat the building’s power feeder. The BAN GW can be used




m participate in power demand and response negotiation. Sim-
: ilarly, a BAN GW needs to be authenticated with the NAN
Early Warning System

SG Control Center (CC) at CCatDS, CCatDS, G W
)

ptibuidsuosolo OS] ((oibesional]  (KeiBegony However, the smart meter’'s authentication scheme may be

vulnerable to Distributed Denial of Services or DDoS attack
e " R UG For instance, we consider a worm propagation scenario in the
foreescle — smart grid whereby the worm forces the infected host, e.g.,
e a smart meter or some consumer-device, to inject bogus or
Windrill ! mal-formed authentication packets to legitimate smar
rough st |-f d authenticat kets to legitimat tenset
[ ) ) ) communications The smart meters at the HAN or BAN are, thus, forced
ater turbine HAN, HAN, HAN, ] . . . . .
to perform expensive signature verifications to authetgica
] the compromised hosts. As a consequence, the victim smart
i Home apliances meters end up exhausting their already limited memory and
Notations: .
[ sy ] || [ Arcononer | Neibortood e evorkuan | DIOCESSING resources.
Building Area Network : BAN . .
(smatwnawrone | [ rewson | Home Area Network: HAN In the next section, we propose an early warning system for
ptical fiber line: . .
=2 [ ] s smart grid to forecast the afore-mentioned DDoS attack.
ectric vehicle Washing machine igBee:

V. SMART GRID EARLY WARNING SYSTEM

In this section, first we discuss a set of guidelines for
to monitor the power needed and usage of the residentsdgekigning an effective early warning system for smart gtk
the corresponding building. In order to facilitate BAN-HAN discussion reveals why Gaussian process regression igrchos
communication, 3G base stations may be used to cover mese formulating our proposed prediction scheme.

areas.

Fig. 1. Smart grid hierarchical networks.

A. Design Guidelines for Smart Grid Early Warning System

C. Home Area Network — HAN . . . .
) o ) _ The main goal of an early warning system is to reliably
A HAN is a subsystem within the smart grid dedicated tgregict problems in the smart grid communication network

effectively manage the on-demand power requirements of th&q rajse alerts about them. Because smart grid consuneers ar
end-users. For exampl& AN in Fig. 1 is responsible for the paying for the service, they expect to get notified quicklgtatb
equipments (such as television, washing machine, oven, gjgplems emerging in the grid. In particular, the problems,
so forth) in the first apartment of the considered building t@hich lead to service interruption or service denial shcagd

a HAN GW, which, in tun, communicates WitRANL. Itis  getected as soon as possible, even better if they are peedict
worth noting that a HAN can also consist of renewable and/gf the users. For the smart grid control center, early fariiog
backup power sources including electrical vehicle, sofar&b  and warning helps to quickly localize network problems s th

battery storage, small wind turbine, and so forth. they may be fixed more rapidly for providing uninterrupted
service to the end-users.
IV. CONSIDEREDATTACK MODEL Note that a smart grid network problem can be anywhere,

The attack model proposed in this section is based on tineluding HANs, BANs, and NANs. The emergence of the
concept provided in [11] for mitigating Denial of Serviceproblem may be attributed to either communication or power-
(DoS) attacks against broadcast authentication in wisele®lated issues. In other words, a wide range of problems such
sensor networks. In our considered attack model, initialty as network congestion, power distribution anomalies (e.g.
attacker can eavesdrop, inject, and modify packets trdtesini voltage level spikes), malicious attacks, and so on may fall
in the smart grid network. Also, the attacker has access toimtio the scope of prediction. Another design concern of the
least a smart meter (e.g., a HAN GW) through which he/sipeediction system should be whether it should be centilize
infects the network by running computationally resourtefwr distributed. While distributed prediction systems may be
nodes, e.g., laptops and workstations. In addition, theckd¢tr preferred, we should ask ourselves whether it is pracyicall
may also use multiple smart meters to launch distributdéeasible. Individual smart meters at home or building have
attacks concurrently. In particular, through worm infentiat- limited processing and memory, and therefore, it may not be
tacks, the attacker may exploit already compromised mialtigpractical to integrate forecasting feature in these mashin
colluding smart meters in different hierarchical netwodds On the other hand, the smart grid control center or the
the smart grid. However, we consider that the infected sm&AN GWs may be equipped with forecasting capability. For
meters cannot compromise the cryptographic secrets of otegample, unusual activities monitored at a building le\ah ¢
smart meters that are used during authentication. be reported to the NAN, and then forwarded to the control

Authentication is a critical security service in smart grigenter. The control center can, then, predict whether algmob
networks. The authentication mainly involves the smartarget is imminent at the respective smart meter, contact with the
in the different component networks of the smart grid. F@mart meter with instructions to take appropriate action to
example, a HAN GW needs to be authenticated with itwitigate the problem. In addition, the control center casoal
corresponding BAN GW before the BAN GW allows it toissue emergency notifications to building or neighborhood




smart meters, or even other regional control centers,nmfay beliefs of a Gaussian process, which characterizes differe
them to anticipate a similar abnormal activity. aspects of the smart grid communication.

Finally, the early warning system should not deal with Assume that the prior belief about the considered function
only a single type of malicious activity. However, for clarconforms to a Gaussian process with a prior mean and covari-
ity and easy explanation, this article sticks with only onance matrix. Through Gaussian process regression, saofples
malicious case study (i.e., the DDoS attack model describ#ek function at different locations in the domain are obsdrv
in Section V). From design point of view, the predictionGiven a set of observation points and their correspondiat re
scheme should be common to different malicious activities valued observations, it is possible to compute the posterio
avoid additional complexity due to adoption or combinatiodistribution of a new point. Note that this posterior distiion
of different methods. A common architecture for smart grig also Gaussian, i.e., with mean and variance functions. Th
warning system should be non-parametric, i.e., it should noptimal parameters of the Gaussian Process are obtained by
be affected by the different types of inputs or patternsvéelri maximizing the log likelihood of the training data with resp
from different malicious activities as mentioned earliear to the parameters. By computing the posterior, it is possibl
example, Gaussian process based models are well establigbemake predictions for unseen test cases.
for various spatial and temporal models because Gaussian
processes offer a principled, probabilistic approach¢difate  cgovariance function selection
machine learning [12]. In the following, we propose adoptio
of Gaussian process regression to forecast the malicious
tivities in smart grid described earlier in Section 1V. Gsias
process formulation can also be applied in a similar way
other malicious activities.

CHowever, to appropriately model the Gaussian process, the
choice of the covariance function is important. The reason
hind this, as stated earlier, is that it must generate a non
negative definite covariance matrix for any set of points or
observations in the smart grid. While stationary and non-
stationary covariance functions may be chosen, the chdiae o
covariance function depends on the problem being solved. In
Consider the notion of random variables to represent abar forecasting approach using Gaussian process regnessio
normal and/or malicious activity features in smart grid eonwe adopt a composite covariance function because it is more
munication. Such random variables may be the number fiéxible in the considered smart grid case that sums cowegian
defective smart meters in a building, the fraction of malis contributions from long and short term trends, a periodic
authentication attempts in a given unit of time, and so forteomponent, and fluctuations with various observation lengt
If we consider such a collection of random variables in smarivo isotropic squared exponential covariance functiores ar
grid communication, we can formulate a Gaussian processed to represent the long and short term trends. The periodi
In this collection of random variables, any finite subset afomponent is the product of a smooth periodic covariance
these variables can be found to have a joint multi-variatenction and another isotropic squared exponential cavas
Gaussian distribution. Note that a Gaussian distributi®n function without latent scale. The fluctuations are repmees
fully specified by a mean vector and a covariance matrix. Qyy an isotropic rational quadratic covariance function.
the other hand, a Gaussian process is fully represented by & the following section, we present the performance eval-
mean function and a covariance or kernel function. Alsognotiation of our proposed forecasting scheme.
that valid covariance functions lead to positive semi-dgfin
covariance matrices. For two arbitrary inputs to the cararé VI. PERFORMANCEEVALUATION

function, the corresponding functional outputs show thele To demonstrate the performance of the proposed forecasting

of similarity. . : : I
. . scheme, we describe the following scenario comprising the
Gaussian processes offer a rich class of models and when

fitted appropriately, they are significantly flexible. Oneclsu earlier mentioned DDoS attack. In the experimental scenari

flexible feature is Gaussian process regression, which \\égvg consider a large building having 20 apartments, i.e., the
describe next for our forecasting purpose. N GW is assigned to 20 HAN GWs. The BAN GW is

assumed to have ten times higher specification/configuratio
) ) than that of a HAN GW. Note that the BAN GW is considered
C. Gaussian Process Regression to be a smart meter with 160MHz CPU, 128KB RAM, and
Gaussian process regression is a Bayesian data modéiB flash memory. Now, assume that half of these apartment-
ing technique, which fully accounts for uncertainty. Likeowners did not update the firmware of their smart meter
other Bayesian-based inference approaches, Gaussian pgewices. As a result, half of the HAN GWs get infected
cesses have a prior and a posterior. Distributions are defir®y a worm, which gradually propagates over the considered
over functions using the Gaussian process which is usedbaglding area network. The rest of the apartment owners
a prior for Bayesian inference. This prior can be flexiblare assumed to have updated their smart meter firmware or
obtained from the training or observation data. In otherdspr operating system with adequate patches. As a result, they
we have prior beliefs about the form of the underlying modedre not vulnerable to the worm infection. The HAN GWs,
Through observations or experiments, data about the moelel mfected by the worm, gradually start to generate malicious
obtained. For instance, from smart grid point of view, theadaauthentication requests to the BAN GW at various rates.
collected from smart meters can be used to form the pribhe BAN GW responds to their authentication requests. The

B. Gaussian process formulation in smart grid

4
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Fig. 2. Memory usage of the victim BAN GW over time for variouses Time (s)
of malicious authentication requests. Fig. 3. Obtaining prediction time using the proposed fortrgsmethod.

authentication process is simulated with ECDSA Signatu%ea Corresponds well with the actual test data set. Given th
verification scheme, which has been already proposed, ifformation conveyed from the BAN GW to the NAN GW, the
existing literature, as an authentication scheme for sgradt Smart grid control center evaluates the forecasting time, a
communication [13]. Thus, the malicious smart meters gitendlerts other BAN GWs about possible cyber attacks so that
at consuming the rather constrained memory resources avlley may take appropriate actions (e.g., ask their resfgecti
able at the BAN GW in order to deny legitimate authenticatiofAN GWs to update the firmware to prevent worm infection).
requests from the uninfected HAN GWs. Also, it is worth noting that for a substantially large triaig

First, we verify the impact of this simple yet effectivelime, the predicted attack occurrence time corresponds wit
attack against the BAN GW through experiments conductée test data with significant accuracy as shown in Fig. 3.
in MATLAB. Fig. 2 demonstrates the memory usage of the In Fig. 4, the time instances at which BAN GW memory
victim BAN GW plotted over time for various average rate& predicted to become exhausted, for different values:,of
of malicious authentication requests, denotedsbyin the are plotted. It is worth mentioning that the delay of BAN GW
conducted experiments, the value ofis varied from 100 tO control center communication has not been considereal her
to 200 per attack launch intervaly. The value of A was because it does not change the purpose and the fundamental
set to a reasonably large value of 10 seconds. Note rthafesults of the conducted simulations. The training time-con
is Contributed by the 10 infected HAN GWs durirm_ The Sidered in F|g 4 iS mUCh |0Wer than that Considered in the
resu|ts in F|g 2 demonstrate that the BAN GW memory |@Sult ShOWI’l in F|g 3. The reason beh|nd th|S iS the faCt that
fully consumed, i.e., the BAN GW is overwhelmed, mord&igher values ofn cause the BAN GW to be overwhelmed
quickly as the value of; increases. For instance, for the lowes®Y the corresponding DDoS attack fairly quickly. Therefore
considered DDoS attack rate, i.e.= 100, it took 500 seconds the training time is set to 50 seconds, i.e., lower than the
to overwhelm the BAN GW memory. On the other hand, fopctual value of the BAN GW memory exhaustion time (i.e.,
higher values of the attack rate, e.g.= 180 andn = 200, 80 seconds) for the considered highest DDoS attack rate (i.e
it takes just about 80 to 100 seconds to consume the overafiz00). As evident in Fig. 4, the time taken by the control
memory of the BAN GW. The BAN GW remains busy tocenter to predict the attack occurrence is reasonable. Yowe
verify the malicious authentication signatures, and itsittd the only shortcoming is that the BAN GW memory exhaustion
yet precious memory is consumed while |eg|t|mate requeﬁge to the lowest attack rate is not predicted by the control
from the remaining uninfected (i.e., legitimate HAN GWs) aréenter since it does not manifest enough attack featuresgiur
turned down. As a consequence, the legitimate smart metl8 short time period. Therefore, it is also important togdo
are denied communication with the BAN GW and are unabféifferent windows of training time simultaneously to cattle
to Specify their power requirements to the smart gnd Cdntrgﬁect of both the moderate and hlgh rates of DDoS attacks.
center.

Next, we present the simulation result of our forecasting VII. CONCLUSION
algorithm forn = 100 as shown in Fig. 3. In this case, a In this article, we have presented a framework for fore-
training time of 400 seconds is considered specific to thissting malicious attacks, which may arise in emerging smar
scenario forn = 100 in order to clearly elucidate the waypower grids. The framework uses probabilistic distribatto
results are obtained in the conducted experiment. Theitigain predict if some abnormal mode of operation is going to disrup
and test data sets are highlighted in the figure. Notice tlahart grid communications. Simulation results demonstrat
the gray area shows the prediction results. The gray atbat the proposed scheme can warn the malicious DDoS
covers the probabilistic predictions, in terms of the prtge attacks beforehand. In addition to the described attackim t
highest and lowest values of memory usage due to the attaakticle, other malicious threats and anomalies (e.qg., labalo
Also, the average of the highest and lowest values of the gnagitage surges and fluctuations) may also be predicted using
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algorithm for shorter training time of 50 seconds in case ffedint DDoS
attack rates.
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