
An Early Warning System against Malicious Activities for Smart Grid 

Communications 

 

 

© 2011 IEEE. Personal use of this material is permitted. Permission from 

IEEE must be obtained for all other uses, in any current or future media, 

including reprinting/republishing this material for advertising or 

promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component of 

this work in other works. 

 

This material is presented to ensure timely dissemination of scholarly and 

technical work. Copyright and all rights therein are retained by authors or 

by other copyright holders. All persons copying this information are 

expected to adhere to the terms and constraints invoked by each author's 

copyright. In most cases, these works may not be reposted without the 

explicit permission of the copyright holder.  

 

Citation: 

Zubair Md. Fadlullah, Mostafa M. Fouda, Xuemin (Sherman) Shen, Yousuke 

Nozaki, and Nei Kato, “An Early Warning System against Malicious Activities 

for Smart Grid Communications,” IEEE Network Magazine, vol. 25, no. 5, pp. 

50-55, Sep.-Oct. 2011. 

 

URL: 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6033036 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6033036


1

An Early Warning System Against Malicious
Activities for Smart Grid Communications

Zubair Md. Fadlullah,Member, IEEE,Mostafa M. Fouda,Member, IEEE,
Xuemin (Sherman) Shen,Fellow, IEEE,Yousuke Nozaki,Member, IEEE,and Nei Kato,Senior Member, IEEE.

Abstract—Smart grid (SG) presents the largest growth poten-
tial in the Machine-to-Machine (M2M) market today. Spurred
by the recent advances in the M2M technologies, the smart
meters/sensors used in smart grid are expected not to require
human intervention in characterizing power requirements and
energy distribution. These numerous sensors are able to report
back the information such as power consumption and other
monitoring signals. However, SG, as it comprises an energy con-
trol and distribution system, requires fast response to malicious
events such as Distributed Denial of Service (DDoS) attacks
against smart meters. In this article, we model the malicious
and/or abnormal events, which may compromise the security and
privacy of smart grid users, as a Gaussian process. Based on this
model, a novel early warning system is proposed for anticipating
malicious events in the SG network. With the warning system,
SG control center can forecast such malicious events, thereby
enabling SG to react beforehand and mitigate the possible
impact of the malicious activity. We verify the effectiveness
of the proposed early warning system through computer-based
simulations.

Index Terms—Smart Grid, Early Warning System, Machine-
to-Machine (M2M) communication.

I. I NTRODUCTION

T HERE is a high expectation recently on the Machine-to-
Machine (M2M) communications over wired and wire-

less links. Various applications of M2M have already started
to emerge in various sectors such as healthcare, vehicular ad
hoc networks, smart home technologies, and so on [1]. The
evolution of M2M has also begun in developing a smart power
grid framework, referred to as the smart grid (SG) [2], [3].
An electric grid having smart or intelligent capability allows
the power providers, distributors, and consumers to maintain
a near real-time awareness of their respective operating re-
quirements and capabilities. Through this awareness, smart
grid is able to produce, distribute, and consume power in
the most effective manner. This type of communication takes
place only amongst machines such as sensors, smart meters,
and other equipments. Therefore, the M2M communications
in smart grid require to be private and secure since many
of the autonomic functions that will run over it will be
critical. Smart grid is usually portrayed to have numerous
electrical appliances connected with one another in a complex
manner so that they can report back on information such
as power consumption and other monitoring signals. This
promises higher efficiency in the power distribution networks
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(i.e., greater availability of power to homes and factoriesat
lower cost), and will allow distributed power generation such
as local solar and wind generators. It will reach into home-
based devices, and therefore, in addition to scalability and fast
communication, serious attention should be paid towards smart
grid security [4]. Since smart grid communication is going
to be based on current networking technologies, the same
security concerns often encountered in conventional networks
will also be prevalent in smart grid. In fact, cyber threats such
as Distributed Denial of Service (DDoS) attacks are likely to
have more impact on smart grid communication because of the
involvement of so many electrical equipments on the consumer
side. By means of early forecasting of malicious threats to
smart grid, it may be possible to take quick measure to protect
the appliances from being compromised by the attacker. To
establish such a forecasting framework, however, we need to
consider the fact that humans are not supposed to interfere with
M2M communication. Instead, the machines within the smart
grid should have an adequate framework to predict or warn
about malicious events, abnormality, and failuresa priori. The
machines in the smart grid can be found in different types
of networks, such as home-network, building network, and
the neighborhood-wide network. The smart meters deployed
in these different networks may be utilized to form an in-
formation sharing network. Such an information sharing can
provide an important resource for developing global and timely
assessments of emerging malicious threats against smart grid
communication.

While smart meters should authenticate other smart meters
and devices, the authentication scheme itself can be targeted
by DDoS attackers. In this article, we consider the spread
of worm in the smart grid that compromises a number of
machines (i.e., smart meters, electrical appliances), which
start sending malicious authentication requests to victimsmart
meters. Such cases observed in a smart grid network are
notified to its hierarchically above network, which in turn
conveys the information to the smart grid control center.
By modeling the malicious attack event through a Gaussian
process, the control center can forecast occurrence of future
events in the smart grid networks.

The remainder of the article is organized as follows. Sec-
tion II presents related work in early prediction of network
threats. Section III describes the considered architecture for
SG communications. Section IV provides our considered
DDoS attack model. Section V explains the Gaussian process
based proposed scheme for forecasting malicious attacks and
Section VI evaluates its performance. Finally, the articleis
concluded in Section VII.



II. RELATED RESEARCHWORK

Recently, the science of prediction has been ported to
SmartGrid research field. It has been revealed that accurate
real-time load forecasting is essential for reliable as well as
efficient operation of a power system [5]. This work utilizes
the accurate reporting of the emerging Advanced Metering
Infrastructure (AMI) to track the incoming load requests
from Plug-in Hybrid Electric Vehicles (PHEVs). It shows
the benefits of the smart use of AMI data in generation
planning and load forecasting. Also, Wanget al. introduce
a data forecasting scheme for determining the electricity con-
sumptiona priori [6]. This scheme uses three-point Gaussian
quadrature approach to construct the forecasting model. A
similar approach for predicting power use has also been
developed in [7]. This work introduces an extension of kernel
regression based on local models which is mentioned to be
appropriate for large-scale data mining scenarios in smartgrid.
A detailed survey is presented in the work by Alfareset al.
that demonstrates the application of different techniquesto
forecast loads in power grids [8]. The surveyed approaches
consist of multiple regression, exponential smoothing, iterative
re-weighted least-squares, stochastic time series, and soon.
The survey also highlights the trend that hybrid mechanisms
are required to forecast events in power grid that combine two
or more of these techniques.

Note that the afore-mentioned works works only consider
the smart grid power consumption information and do not
investigate whether such models can be effectively employed
for forecasting abnormal events in the smart grid power dis-
tribution and/or communication networks. Although Gaussian
processes have been considered in many learning scenarios in
literature [9], they have not been utilized in learning abnormal
modes of operation in smart grid. In this article, we simplify
the modeling of Gaussian process in smart grid communication
for predicting malicious events, which may disrupt the smart
meters.

III. SMART GRID COMMUNICATION ARCHITECTURE

This section covers the basics of smart grid communication
architecture. The smart grid power transmission and distribu-
tion system delivers power from the power plant to end-users
through a transmission substation and a number of distribution
substations. The transmission substation delivers power from
the power plant over high voltage transmission lines (generally
over 230 kilo volts) to distribution substations, which are
placed in different regions. Distribution substations arerespon-
sible for converting the electric power into medium voltage
levels, and distributing this medium-voltage level power to
the building-feeders. To make it usable by the consumers, the
building feeders have to convert the medium voltage level into
a lower level.

Our considered smart grid communication system is sepa-
rated from the power transmission and distribution system,and
can be viewed as an information sharing network comprising
a number of hierarchical components as illustrated in Fig. 1.
For communication, however, the above consideration may not
be applicable since the communication links have different

requirements than those of the power lines. The transmission
substation and the control centers of the distribution substa-
tions are connected with one another in a meshed network,
which can be built over optical fiber technology. The remain-
ing components of the considered SG communication topology
is divided into a number of networks, which feature real-life
set-ups of a city or a metropolitan area. Broadly speaking, a
city has a number of regions (e.g., wards), each of which is
covered by a distribution substation. Every region comprises
several neighborhoods, each neighborhood has many build-
ings, and each building may have a number of apartments.
We derive our smart grid communication architecture from
this real-life planning of a metropolitan area as follows.

The communication architecture for the lower distribution
network (beneath the control center) is divided into a number
of hierarchical networks, namely Neighborhood Area Network
(NAN), Building Area Network (BAN), and Home Area
Network (HAN). This is, in spirit, similar to the smart grid
system model and processes described in the work by Niyatoet
al. [10]. Each NAN can be considered to be composed of a
number of BANs. On the other hand, every BAN contains a
number of apartments. The apartments have their respective
local area networks, each of which is referred to as a HAN.
In addition, there are advanced meters called smart meters
deployed in the smart grid architecture that represent AMI
for enabling an automated, two-way communication between
the utility meter and the utility provider. The smart meters
are equipped with two interfaces: (i) power reading interface
and (ii) communication gateway interface. The smart meters
used in NAN, BAN, and HAN are referred to as NAN
GW (GateWay), BAN GW, and HAN GW, respectively. In
addition, it is also worth mentioning that based upon the
existing standards of smart grid, Internet Protocol (IP)-based
communication is preferred to allow virtually effortless inter-
connections with HANs, BANs and NANs.

A. Neighborhood Area Network – NAN

A NAN is a localized network of the considered SG
communication topology. A NAN comprises one or more
3G (Third Generation) base stations and a number of BANs.
Notice that the 3G framework used for smart grid commu-
nications should be different from the existing ones used for
providing other services, e.g., Internet. This should be done
in order to prevent network congestion. Also, it is possibleto
avoid security threats arising from the Internet that may have
impact on the delay-sensitive SG communications. It should
be noted also that other modes of communications apart from
3G may be alternative solutions for this purpose. The NAN
GW can monitor how much power is being distributed to a
particular neighborhood by the corresponding control center
at the distribution substation.

B. Building Area Network – BAN

Every building connected to the smart power grid maintains
its own BAN. A BAN consists of a number of apartments
having HANs. The BAN smart meter/GW is typically set up
at the building’s power feeder. The BAN GW can be used
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to monitor the power needed and usage of the residents of
the corresponding building. In order to facilitate BAN-HANs
communication, 3G base stations may be used to cover more
areas.

C. Home Area Network – HAN

A HAN is a subsystem within the smart grid dedicated to
effectively manage the on-demand power requirements of the
end-users. For example,HAN1 in Fig. 1 is responsible for the
equipments (such as television, washing machine, oven, and
so forth) in the first apartment of the considered building to
a HAN GW, which, in turn, communicates withBAN1. It is
worth noting that a HAN can also consist of renewable and/or
backup power sources including electrical vehicle, solar panel,
battery storage, small wind turbine, and so forth.

IV. CONSIDEREDATTACK MODEL

The attack model proposed in this section is based on the
concept provided in [11] for mitigating Denial of Service
(DoS) attacks against broadcast authentication in wireless
sensor networks. In our considered attack model, initiallyan
attacker can eavesdrop, inject, and modify packets transmitted
in the smart grid network. Also, the attacker has access to at
least a smart meter (e.g., a HAN GW) through which he/she
infects the network by running computationally resourceful
nodes, e.g., laptops and workstations. In addition, the attacker
may also use multiple smart meters to launch distributed
attacks concurrently. In particular, through worm infection at-
tacks, the attacker may exploit already compromised multiple
colluding smart meters in different hierarchical networksof
the smart grid. However, we consider that the infected smart
meters cannot compromise the cryptographic secrets of other
smart meters that are used during authentication.

Authentication is a critical security service in smart grid
networks. The authentication mainly involves the smart meters
in the different component networks of the smart grid. For
example, a HAN GW needs to be authenticated with its
corresponding BAN GW before the BAN GW allows it to

participate in power demand and response negotiation. Sim-
ilarly, a BAN GW needs to be authenticated with the NAN
GW.

However, the smart meter’s authentication scheme may be
vulnerable to Distributed Denial of Services or DDoS attacks.
For instance, we consider a worm propagation scenario in the
smart grid whereby the worm forces the infected host, e.g.,
a smart meter or some consumer-device, to inject bogus or
mal-formed authentication packets to legitimate smart meters.
The smart meters at the HAN or BAN are, thus, forced
to perform expensive signature verifications to authenticate
the compromised hosts. As a consequence, the victim smart
meters end up exhausting their already limited memory and
processing resources.

In the next section, we propose an early warning system for
smart grid to forecast the afore-mentioned DDoS attack.

V. SMART GRID EARLY WARNING SYSTEM

In this section, first we discuss a set of guidelines for
designing an effective early warning system for smart grid.The
discussion reveals why Gaussian process regression is chosen
for formulating our proposed prediction scheme.

A. Design Guidelines for Smart Grid Early Warning System

The main goal of an early warning system is to reliably
predict problems in the smart grid communication network
and raise alerts about them. Because smart grid consumers are
paying for the service, they expect to get notified quickly about
problems emerging in the grid. In particular, the problems,
which lead to service interruption or service denial shouldbe
detected as soon as possible, even better if they are predicted
to the users. For the smart grid control center, early forecasting
and warning helps to quickly localize network problems so that
they may be fixed more rapidly for providing uninterrupted
service to the end-users.

Note that a smart grid network problem can be anywhere,
including HANs, BANs, and NANs. The emergence of the
problem may be attributed to either communication or power-
related issues. In other words, a wide range of problems such
as network congestion, power distribution anomalies (e.g.,
voltage level spikes), malicious attacks, and so on may fall
into the scope of prediction. Another design concern of the
prediction system should be whether it should be centralized
or distributed. While distributed prediction systems may be
preferred, we should ask ourselves whether it is practically
feasible. Individual smart meters at home or building have
limited processing and memory, and therefore, it may not be
practical to integrate forecasting feature in these machines.
On the other hand, the smart grid control center or the
NAN GWs may be equipped with forecasting capability. For
example, unusual activities monitored at a building level can
be reported to the NAN, and then forwarded to the control
center. The control center can, then, predict whether a problem
is imminent at the respective smart meter, contact with the
smart meter with instructions to take appropriate action to
mitigate the problem. In addition, the control center can also
issue emergency notifications to building or neighborhood
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smart meters, or even other regional control centers, informing
them to anticipate a similar abnormal activity.

Finally, the early warning system should not deal with
only a single type of malicious activity. However, for clar-
ity and easy explanation, this article sticks with only one
malicious case study (i.e., the DDoS attack model described
in Section IV). From design point of view, the prediction
scheme should be common to different malicious activities to
avoid additional complexity due to adoption or combination
of different methods. A common architecture for smart grid
warning system should be non-parametric, i.e., it should not
be affected by the different types of inputs or patterns derived
from different malicious activities as mentioned earlier.For
example, Gaussian process based models are well established
for various spatial and temporal models because Gaussian
processes offer a principled, probabilistic approach to facilitate
machine learning [12]. In the following, we propose adoption
of Gaussian process regression to forecast the malicious ac-
tivities in smart grid described earlier in Section IV. Gaussian
process formulation can also be applied in a similar way to
other malicious activities.

B. Gaussian process formulation in smart grid

Consider the notion of random variables to represent ab-
normal and/or malicious activity features in smart grid com-
munication. Such random variables may be the number of
defective smart meters in a building, the fraction of malicious
authentication attempts in a given unit of time, and so forth.
If we consider such a collection of random variables in smart
grid communication, we can formulate a Gaussian process.
In this collection of random variables, any finite subset of
these variables can be found to have a joint multi-variate
Gaussian distribution. Note that a Gaussian distribution is
fully specified by a mean vector and a covariance matrix. On
the other hand, a Gaussian process is fully represented by a
mean function and a covariance or kernel function. Also, note
that valid covariance functions lead to positive semi-definite
covariance matrices. For two arbitrary inputs to the covariance
function, the corresponding functional outputs show the level
of similarity.

Gaussian processes offer a rich class of models and when
fitted appropriately, they are significantly flexible. One such
flexible feature is Gaussian process regression, which we
describe next for our forecasting purpose.

C. Gaussian Process Regression

Gaussian process regression is a Bayesian data model-
ing technique, which fully accounts for uncertainty. Like
other Bayesian-based inference approaches, Gaussian pro-
cesses have a prior and a posterior. Distributions are defined
over functions using the Gaussian process which is used as
a prior for Bayesian inference. This prior can be flexibly
obtained from the training or observation data. In other words,
we have prior beliefs about the form of the underlying model.
Through observations or experiments, data about the model are
obtained. For instance, from smart grid point of view, the data
collected from smart meters can be used to form the prior

beliefs of a Gaussian process, which characterizes different
aspects of the smart grid communication.

Assume that the prior belief about the considered function
conforms to a Gaussian process with a prior mean and covari-
ance matrix. Through Gaussian process regression, samplesof
the function at different locations in the domain are observed.
Given a set of observation points and their corresponding real
valued observations, it is possible to compute the posterior
distribution of a new point. Note that this posterior distribution
is also Gaussian, i.e., with mean and variance functions. The
optimal parameters of the Gaussian Process are obtained by
maximizing the log likelihood of the training data with respect
to the parameters. By computing the posterior, it is possible
to make predictions for unseen test cases.

D. Covariance function selection

However, to appropriately model the Gaussian process, the
choice of the covariance function is important. The reason
behind this, as stated earlier, is that it must generate a non-
negative definite covariance matrix for any set of points or
observations in the smart grid. While stationary and non-
stationary covariance functions may be chosen, the choice of a
covariance function depends on the problem being solved. In
our forecasting approach using Gaussian process regression,
we adopt a composite covariance function because it is more
flexible in the considered smart grid case that sums covariance
contributions from long and short term trends, a periodic
component, and fluctuations with various observation lengths.
Two isotropic squared exponential covariance functions are
used to represent the long and short term trends. The periodic
component is the product of a smooth periodic covariance
function and another isotropic squared exponential covariance
function without latent scale. The fluctuations are represented
by an isotropic rational quadratic covariance function.

In the following section, we present the performance eval-
uation of our proposed forecasting scheme.

VI. PERFORMANCEEVALUATION

To demonstrate the performance of the proposed forecasting
scheme, we describe the following scenario comprising the
earlier mentioned DDoS attack. In the experimental scenario,
we consider a large building having 20 apartments, i.e., the
BAN GW is assigned to 20 HAN GWs. The BAN GW is
assumed to have ten times higher specification/configuration
than that of a HAN GW. Note that the BAN GW is considered
to be a smart meter with 160MHz CPU, 128KB RAM, and
1MB flash memory. Now, assume that half of these apartment-
owners did not update the firmware of their smart meter
devices. As a result, half of the HAN GWs get infected
by a worm, which gradually propagates over the considered
building area network. The rest of the apartment owners
are assumed to have updated their smart meter firmware or
operating system with adequate patches. As a result, they
are not vulnerable to the worm infection. The HAN GWs,
infected by the worm, gradually start to generate malicious
authentication requests to the BAN GW at various rates.
The BAN GW responds to their authentication requests. The
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Fig. 2. Memory usage of the victim BAN GW over time for various rates
of malicious authentication requests.

authentication process is simulated with ECDSA signature
verification scheme, which has been already proposed, in
existing literature, as an authentication scheme for smartgrid
communication [13]. Thus, the malicious smart meters attempt
at consuming the rather constrained memory resources avail-
able at the BAN GW in order to deny legitimate authentication
requests from the uninfected HAN GWs.

First, we verify the impact of this simple yet effective
attack against the BAN GW through experiments conducted
in MATLAB. Fig. 2 demonstrates the memory usage of the
victim BAN GW plotted over time for various average rates
of malicious authentication requests, denoted byn. In the
conducted experiments, the value ofn is varied from 100
to 200 per attack launch interval,∆. The value of∆ was
set to a reasonably large value of 10 seconds. Note thatn

is contributed by the 10 infected HAN GWs during∆. The
results in Fig. 2 demonstrate that the BAN GW memory is
fully consumed, i.e., the BAN GW is overwhelmed, more
quickly as the value ofn increases. For instance, for the lowest
considered DDoS attack rate, i.e.,n = 100, it took 500 seconds
to overwhelm the BAN GW memory. On the other hand, for
higher values of the attack rate, e.g.,n = 180 andn = 200,
it takes just about 80 to 100 seconds to consume the overall
memory of the BAN GW. The BAN GW remains busy to
verify the malicious authentication signatures, and its limited
yet precious memory is consumed while legitimate requests
from the remaining uninfected (i.e., legitimate HAN GWs) are
turned down. As a consequence, the legitimate smart meters
are denied communication with the BAN GW and are unable
to specify their power requirements to the smart grid control
center.

Next, we present the simulation result of our forecasting
algorithm for n = 100 as shown in Fig. 3. In this case, a
training time of 400 seconds is considered specific to this
scenario forn = 100 in order to clearly elucidate the way
results are obtained in the conducted experiment. The training
and test data sets are highlighted in the figure. Notice that
the gray area shows the prediction results. The gray area
covers the probabilistic predictions, in terms of the projected
highest and lowest values of memory usage due to the attack.
Also, the average of the highest and lowest values of the gray
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area corresponds well with the actual test data set. Given this
information conveyed from the BAN GW to the NAN GW, the
smart grid control center evaluates the forecasting time, and
alerts other BAN GWs about possible cyber attacks so that
they may take appropriate actions (e.g., ask their respective
HAN GWs to update the firmware to prevent worm infection).
Also, it is worth noting that for a substantially large training
time, the predicted attack occurrence time corresponds with
the test data with significant accuracy as shown in Fig. 3.

In Fig. 4, the time instances at which BAN GW memory
is predicted to become exhausted, for different values ofn,
are plotted. It is worth mentioning that the delay of BAN GW
to control center communication has not been considered here
because it does not change the purpose and the fundamental
results of the conducted simulations. The training time con-
sidered in Fig. 4 is much lower than that considered in the
result shown in Fig. 3. The reason behind this is the fact that
higher values ofn cause the BAN GW to be overwhelmed
by the corresponding DDoS attack fairly quickly. Therefore,
the training time is set to 50 seconds, i.e., lower than the
actual value of the BAN GW memory exhaustion time (i.e.,
80 seconds) for the considered highest DDoS attack rate (i.e.,
n=200). As evident in Fig. 4, the time taken by the control
center to predict the attack occurrence is reasonable. However,
the only shortcoming is that the BAN GW memory exhaustion
due to the lowest attack rate is not predicted by the control
center since it does not manifest enough attack features during
the short time period. Therefore, it is also important to adopt
different windows of training time simultaneously to catchthe
effect of both the moderate and high rates of DDoS attacks.

VII. C ONCLUSION

In this article, we have presented a framework for fore-
casting malicious attacks, which may arise in emerging smart
power grids. The framework uses probabilistic distribution to
predict if some abnormal mode of operation is going to disrupt
smart grid communications. Simulation results demonstrate
that the proposed scheme can warn the malicious DDoS
attacks beforehand. In addition to the described attack in this
article, other malicious threats and anomalies (e.g., abnormal
voltage surges and fluctuations) may also be predicted using
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the proposed scheme so that the control center can instruct
smart meters to take actions against such anomalies promptly.
However, for actual networks in the smart grid with back-
ground traffic, we need to establish a baseline for estimation
errors in identifying actual abnormal activities. These issues
will comprise our future study.
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