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Abstract—The Wireless Mesh Network (WMN) has already
been recognized as a promising broadband access network
technology from both academic and commercial perspective. In
order to improve the performance of WMNs, extensive research
efforts have been dedicated towards finding means to increase
the number of simultaneous transmissions in the network while
avoiding signal interference among radios. In case of WMNs
based on IEEE 802.11 b/g standards, most recent research works
have relied upon the usage of orthogonal channels for solving the
Channel Assignment (CA) problem. In this paper, we explore the
possibility of exploiting Partially Overlapped Channels (POCs)
by introducing a novel game theoretic distributed CA algorithm.
Our proposed algorithm outperforms both the conventional
orthogonal channel approach and the recent heuristic CA algo-
rithms using POC. The proposed algorithm is shown to achieve
near-optimal performance in the average case. In addition, the
upper bound Price of Anarchy for Multi-Radio Multi-Channel
(MRMC) networks is derived to evaluate the effectiveness of the
proposed approach.

Index Terms—Wireless Mesh Networks (WMNs), channel as-
signment problem, partially overlapped channels, game theory,
potential games.

I. INTRODUCTION

Recently, Wireless Mesh Networks (WMNs) have at-
tracted tremendous interest from researchers involved in both
academia and industry [1]. While a WMN consists of a multi-
hop environment, its concept and target differ from those of
the conventional Mobile Ad hoc Networks (MANETs). In a
typical WMN, there are two types of nodes, namely Mesh
Routers (MRs) and Mesh Clients (MCs). MRs are responsible
for network routing and bridging while MCs are light-weight
nodes performing simple client functions. One key feature
of the WMN is the backbone network composed by MRs
in which they are usually static and have no constraints on
energy consumption. Due to these attractive features, WMNs
are expected to appear as a promising technology in the Next
Generation Networks (NGNs) in order to deploy ubiquitous
Internet access. To promote this phenomenal prospect, a num-
ber of standards have already been developed for WMNs for
different access ranges, namely IEEE 802.15.4, IEEE 802.11s
and IEEE 802.16j [1]. Since IEEE 802.11 is one of the most
popular access technologies for commercial end-users, we are
interested in WMNs based on this technology.

One of the most promising techniques in Multi-Radio
Multi-Channel (MRMC) field is Partially Overlapped Channel

Assignment by using IEEE 802.11 b/g technology, which can
increase the network throughput by exploiting more simultane-
ous transmissions. According to this standard, there are eleven
channels available for communication on the 2.4 GHz band.
By exploiting all eleven channels in a systematic approach
to avoid the interference among adjacent channels, we can
achieve a higher number of simultaneous transmissions than
restricting ourselves with the use of only three orthogonal
channels. Note that this approach is not as straightforward as
it seems at the first glance. Unless it is carefully planned, adja-
cent channel interference may become significant in severely
degrading network performance instead of improving it.

In this paper, we use game theory to design a systematic
approach to utilize partially overlapped channels in WMNs
while minimizing the adverse effect of adjacent channel inter-
ference. Game theory is a mathematical tool, particularly use-
ful, in the network engineering field to model highly complex
scenarios that may include complex traffic models, mobility,
unpredictable link quality, in which pure mathematical analysis
has met limited success [2]. This mathematical tool provides
researchers with the ability to model individual or independent
decision makers called “players”. Every player interacts with
other players and has an impact on their decisions. The
dynamics of WMNs and MANETs closely resemble to this
observation.

Contributions - Our work investigates the CA problem
from the game theoretic perspective, and our main contribu-
tions are threefold: (i) we model the interactions among MRs
as a de-centralized game, (ii) we derive a negotiation based
optimal CA algorithm based upon the properties of a potential
game, and (iii) we propose an upper bound for the Price
of Anarchy regarding MRMC networks. Through extensive
simulations, we compare the game theoretic results against
previously proposed heuristic CA algorithms, which includes
partially overlapped and orthogonal CA algorithms.

The remainder of this paper is structured as follows. Sec-
tion II surveys related works on solving MRMC CA problem.
Section III identifies and describes the CA problem, and
reviews the interference model used in our work. The optimal
CA algorithm is described in Section IV. Then, the upper
bound of Price of Anarchy is derived in Section V. The
performance of the proposed algorithm is evaluated in Section
VI, and finally Section VII concludes the paper.



II. RELATED WORKS

In 2010, the work conducted by Zhou et al. developed fully
distributed scheduling schemes, which solve the following
three problems for video streaming over multi-channel multi-
radio networks: (i) CA, (ii) rate allocation, and (iii) routing
and fairness. Instead of focusing on optimal system through-
put or scheduling efficiency as with conventional schedul-
ing schemes, this work aimed at achieving minimal video
distortion and a level of fairness through integrated media-
aware distribution and network resource allocation. This work,
however, did not consider the issue of overlapping or non-
overlapping channels in formulating the CA problem.

The survey on channel assignment performed by Skalli et al.
[3] reviews a number of CA schemes using non-overlapping
channels. According to this survey, “this (i.e., the use of non-
overlapping channels) leads to efficient spectrum utilization
and increases the actual bandwidth available to the network”.
However, the more recent finding by Bukkapatanam et al. [4]
using numerical analysis demonstrates that the usage of over-
lapping channels achieves better performance than three non-
overlapping channels for the backbone network, expanding the
previous work of Mishra [5], [6]. However, none of the these
works clearly delineates a novel CA algorithm exploiting POC.

Following the promising trend of using POC, a new heuristic
CA algorithms was proposed in [7] and in one of our earlier
works [8]. In this paper, we further develop our previous
work in [8] by addressing the WMN channel assignment
problem from the game theoretical perspective in contrast
with a heuristic approach adopted earlier. Game theory has
been utilized effectively in wide areas of research, particularly
in formulating and solving Economics problems [9], [10].
Using the game theoretical perspective to address complex
engineering issues has immensely attracted the attention of
prominent researchers in the last decade and its applicability
has been abound ever since. More specifically in the context of
network communications, there has been a plethora of game
theory based work, ranging from power control in cellular
radio systems [11] to optimal routing control [12] and use in
cognitive radio networks [13]. Readers unfamiliar with Game
Theory concepts and its applications are encouraged to study
the work in [14], which contains fundamental results in this
area and are specially focused on communication applications.
Another interesting contribution is worth noting by Meshkati
et al. [15], who proposed a non-cooperative game theoretic
framework, which aims at performing trade-offs among energy
efficiency, delay, throughput, and constellation size. This work
shows that a user, in order to maximize its utility in terms of
energy efficiency, needs to select the lowest modulation level,
which can accommodate the user’s Quality of Service (QoS)
delay constraint. However, this approach missed one important
aspect, i.e., it did not take CA problem into account. The
work in [16] developed a game-theoretic model for radio re-
source management in a network architecture, which combines
IEEE 802.11 wireless local area networks (WLANs) with
IEEE 802.16-based multi-hop wireless mesh infrastructure for
relaying the WLAN traffic to the Internet. The formulated
game offers the players fair bandwidth allocation and optimal

admission control of different types of connections such as
WLAN connections and relay connections in an IEEE 802.16
mesh router. In [17], an incompletely cooperative game theory
was proposed to improve the system performance of WMNs.
In this approach, all the players contend for the channel to
transmit real packets always with the optimal strategy. In
addition, the works in [18], [19] offers game theory models
to address the CA problem in wireless networks.

The afore-mentioned game theoretic approaches, however,
do not consider exploiting partially overlapped channels in
wireless networks, particularly in WMNs. The research con-
ducted by Zhang and Fang [20] attempts to address this
to some extent by presenting a joint solution for channel
and power allocation. However, unlike our work, their work
focuses on the access network issue instead of the backbone.
Recently, Yuan et al. [21] also addressed the capacity maxi-
mization problem for WLANs exploiting overlapping channels
and game theory concepts by using an interesting approach
that is not in the scope of our work. They addressed the
problem by varying the channel width in order to achieve a
fair/optimal resource allocation.

In this paper, we employ game theory concepts to model
MRs as decision makers of a cooperative game. The interac-
tion among all MRs can be classified as an identical interest
game as in [20]. Furthermore, we introduce a negotiation-
based CA algorithm that converges to a steady state, in other
words a Nash Equilibrium (NE), and as a property of identical
interest games, this condition implies achieving an optimum
CA.

III. SYSTEM MODEL

We may define the CA issue as an optimization problem
in terms of mapping available communication channels to
network interfaces in order to maximize the communica-
tion capacity while minimizing signal interference. Note that
Interference range is defined as the distance within which
interference occurs.

In a multi-channel environment, four different types of
interference and their influence on the network capacity should
be addressed. To describe easily, let us consider two pairs of
nodes where each pair has a sender and a receiver. Let the
sender and receiver of the first pair be S1 and R1, respectively.
The sender and receiver of the second pair are denoted by
S2 and R2, respectively. To illustrate our considered system
model, first we describe the following terms.
• Co-channel Interference: Co-channel interference occurs

in case that all four nodes involved in the afore-mentioned
pairs are operating in the same channel. Because of
Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA), this type of interference is less harmful for
the network capacity than Adjacent Channel Interference.
Consider the following scenario: node S1 is starting to
transmit a packet to R1. It checks if the medium is busy
or idle. If it detects that the medium is busy, the node
will withdraw its attempt to transmit by postponing it.
However, if the medium is idle, it will proceed with the
transmission. While S1 is sending data to R1, consider a



scenario in which S2 also attempts to send a packet to R2.
S2 will detect the busy medium. Hence, S2 will withdraw
the transmission attempt and wait over a backoff period.
Later on, it will attempt again and if the transmission
between S1-R1 is already finished, S2 will finally succeed
with the signal transmission to R2. In this scenario, we
have a contention based access.

• Orthogonal Channels: Consider another scenario whereby
S1-R1 and S2-R2 are using two orthogonal channels.
Again, S1 detects an idle medium and starts the packet
transmission. Meanwhile, S2 will also detect an idle
medium since it is operating on a distinct channel.
Both pairs are able to successfully transmit their packets
simultaneously, because there is no overlapping frequency
band between those channels. Limitation of this approach
is that only three pairs of nodes can communicate in
this manner since only three out of the eleven available
channels, namely channels 1, 6, and 11, are orthogonal.

• Adjacent Channel Interference: This kind of interference
seriously degrades the network capacity. Here, we con-
sider S1-R1 and S2-R2 assigned to channels 1 and 3,
respectively. S1 begins transmitting first, S2 will detect
an idle medium in channel 3 and also starts to send its
packet. However, since channels 1 and 3 share a common
frequency band, the receivers will not be able to success-
fully decode the packets, causing a transmission error that
severely degrades the network throughput. It is important
to note that the interference range for adjacent channels
is inversely proportional to the channel separation.

• Self Interference: Self Interference is defined as a node
causing interference to itself due to one of its trans-
missions. This case will occur in multiple radio nodes
using omni-directional antennas. Consider S1 with two
network interfaces. If one interface is assigned to channel
1 and the other one to channel 3, whenever S1 tries
to simultaneously send packets on both interfaces, the
Signal to Interference Ratio (SIR) will be degraded no
matter where the receiver node is, since channels 1 and 3
are overlapping channels. This type of interference was
previously mentioned in [22] and it can be avoided if no
node has its interfaces assigned to overlapping channels.

Considering the afore-mentioned types of interference, the
authors in [7] developed a schematic procedure for CA. This
model is named as I-Matrix and it determines whether it is
possible or not to assign channels to a given link exploiting
POC. To adopt this model in our work, we need to define
one of its main components, namely Interference Factor
(IF). The Interference Factor, fi,j , uses, as input parameters,
geographical distance and channel separation, and provides the
effective spectral overlapping level between channels i and j.

In order to calculate fi,j , the experimental measurements
showed in [22] [23] are used and scaled by a factor of
10. To achieve an environment as similar as possible as the
previous CA scheme, we use the same Interference Range
(IR) table where δ = |i − j| denotes the channel separation
and IR(δ) indicates the maximum distance in which there will
be interference between channels i and j.

Given the IR table, let d be the distance between transceivers

TABLE I
INTERFERENCE RANGE (IR)

δ 0 1 2 3 4 5

IR(δ) 132.6 90.8 75.9 46.9 32.1 0

using channels i and j. We define d being zero if the
transceivers are in the same node. To calculate fi,j we should
consider the three following cases:

1) fi,j = 0: when δ ≥ 5 or d > IR(δ)
In this case, there will be no interference between the ra-
dios since either they are assigned orthogonal channels,
or they are distant enough not to cause interference.

2) 1 < fi,j <∞: when 0 ≤ δ < 5 and d ≤ IR(δ)
Here, we have two radios assigned to overlapping
channels, and the distance between them is within the
interference range. Thus, IF should be calculated as the
following equation in which fi,j is inversely propor-
tional to the distance between radios.

fi,j = IR(δ)/d : (1)

3) fi,j =∞: when 0 ≤ δ < 5 and d = 0
Here, we strictly exclude the case of self interference.
Two overlapping channels (δ < 5) will not be assigned
at a given node.

By using this interference model exploiting overlapping
channels, we can decrease the number of non-interfering links,
thereby increasing the network capacity compared to the tradi-
tional orthogonal channel approach. In the following section,
we use a game theoretic approach to achieve a distributed
CA procedure. By modeling the CA as a game, we can use
the mathematical results from the game theory to guarantee
optimized network performance.

IV. PROPOSED SOLUTION BASED ON GAME THEORY

In this section, we model our MRs as “players”. The main
objective of such modeling is to derive an optimal CA using
the mathematical analyses provided by the Game Theory
framework, and then compare this result against existing
heuristic algorithms.

Each MR is considered as a decision maker of the game,
and we model the interactions among them as a Cooperative
Channel Assignment Game (CoCAG). The game is composed
of a finite set of players, denoted by A = {a1, a2, . . . , aN}
and all the players have a common strategy space S = Si,∀i.
In this context, we map the channel(s) assigned to a given
MR’s radios to its chosen strategy. Formally, the strategy of
ith player is si = {ki,1, . . . , ki,c, . . . , ki,|C|}, where |C| is the
number of channels for the channel set C and ki,c is a binary
value. ki,c is set to one, if channel c is assigned to one of the
player’s radio. Otherwise, ki,c is set to zero. The game profile
is defined as the Cartesian product of the players’ strategy
vector, Ψ = ×i∈Asi = s1 × s2 × · · · × sN. Note that a game
profile includes one strategy for each player. Also, s−i is
specially defined as the strategy set chosen by all other players
except player i.



The objective of the game is to maximize the network
throughput. We define a joint metric, Mi, for each player i,
that translates the network link configuration and topology to
a numerical value. This metric is directly proportional to the
number of assigned links in each node. Each link’s capacity is
evaluated according to the number of interfering links. Two
topology control factors, k and h, are included, since the
network should not be evaluated only by its number of links
but also how efficiently these links connect the MRs towards
the WMN gateway (GW), i.e., the hop count. Mi is defined
as follows:

Mi = k

∑
j∈C

R
nj

h
(2)

where
− k is a connectivity factor set to one, if the node can

indirectly reach the GW, zero otherwise.
− R is the link data rate (in Mbps).
− n is the number of interfering links.
− h is the hop count from the node to the GW.
Each player has its utility function dependent on her own

strategy and other players’ strategy Ui(Ψ), and since we
defined a cooperative game, the following holds and UNET
stands for utility of the network:

UNET (Ψ) = Ui(Ψ) =
∑
i∈A

Mi,∀i. (3)

Players will negotiate and change their interdependent
strategies in S in order to achieve an optimal value for UNET .
Then two important issues arise: (i) whether they ever reach a
consensus, or a steady state, and (ii) if the steady state, indeed,
exists, how efficient its performance would be.

In Game Theory, Nash Equilibrium (NE) is an important
concept. The players will meet an agreement if NE exists.
Formal definition of NE, as in [14], is described below.

Definition 1. strategy s∗ ∈ S is an NE if

Ui(s
∗) ≥ Ui(s

′

i, s−i) ∀ s
′

i ∈ Si,∀i ∈ A (4)

According to this definition, no player can benefit by
deviating from its strategy if other players do not change
theirs. In other words, this result guarantees an agreement
for negotiations among players. However, no optimal outcome
or fairness is intrinsically guaranteed. Nevertheless, a specific
type of games, called potential games have useful properties
that address the outcome efficiency issue and the existence of
NE. For a potential game, the following holds:
• Every finite potential game possesses at least one pure

strategy NE [24].
• All NEs are either local or global maximizers of the

utility function [24].
• There are well-known learning schemes to reach these

function maximizers in the literature, namely best re-
sponse and better response (BR) [2] techniques.

Based upon the definition of a potential game, now we have
the following lemma.

Lemma 1. CoCAG is a potential game.

Proof: A potential game is defined as a game in which a
potential function P exists

P (s
′
, s−i)−P (s

′′
, s−i) = Ui(s

′
, s−i)−Ui(s

′′
, s−i) ∀ i, s

′
, s
′′

(5)
where s

′
and s

′′
stand for two arbitrary strategies. It is

straightforward that the network utility function (3) itself is
a potential function for CoCAG.

Hence, we have:

P = Ui(Ψ) = UNET (Ψ),∀i (6)

As a matter of fact, CoCAG is an identical interest game,
since all the players share the same utility function, which is
a strict case of potential games and consequently all of its
properties are applicable.

By making use of NE and potential games, we guarantee
that our proposed CoCAG approach will converge to an agree-
ment among players and this point will be a utility function
maximizer. In the literature, there are two famous learning
schemes to accomplish this purpose, namely best response and
better response techniques, as expressed in equations (7) and
(8), respectively.

st+1
i = argmax

s∈Si

Ui(Ψ) (7)

st+1
i =

{
srand
i if Ui(srand

i , s−i) > Ui(s
t
i , s−i)

sti otherwise
(8)

In the former scheme, during its turn to choose a strategy to
play, the player searches her entire strategy space and selects
the one that yields the best outcome considering the other
players’ strategy. This scheme provides fast convergence. On
the other hand, it requires intensive processing that grows
linearly according to the strategy space. In the latter scheme,
during its turn, each player selects a random strategy and keeps
it as long as it generates a better outcome than the previous
one. Thus, better response provides less intensive computation
at the cost of a slower convergence to the equilibrium. In other
words, there is a trade-off between computational complexity
and convergence speed.

Also note that, the equilibrium may occur at the local
optimum of the utility function, instead of the global optimum.
In this case, the system performance will be trapped in a sub-
optimal state and, since this is one instance of NE, no node will
be able to increase its utility function by changing her strategy.
In order to shed some light on this local-global optimum issue,
interested readers may be referred to Sec. V.

To avoid the players to be trapped in a suboptimal state,
we employ the smoothed better response (SBR) learning
scheme that was introduced in [25]. We adopt this technique
since it is proved to converge, as illustrated in the work of
[20]. This method incorporates randomness in the decision
process that may lead the convergence to the global NE with
a high probability. This uncertainty occurs according to the
probability function (9). The player will evaluate the newly
chosen random strategy against the previous one, and select
the new strategy according to (9):



p(srand
i , sti ) =

eUi(s
rand
i ,s−i)/γ

eUi(srand
i ,s−i)/γ + eUi(sti ,s−i)/γ

. (9)

Equation (9) is a function of the difference of the utility
function given by each strategy. In case the difference is
positively high, the player will keep this choice with a high
probability. An opposite scenario is also possible, i.e., the
player is highly likely to avoid a strategy that provides a
much lower utility function. An important analysis occurs for
small differences. The player will select one of the strategies
almost randomly – by nearly 50%. In this case, even though
the players will be able to select a “worse” strategy or not
to select a marginal “better” strategy, this behaviour allows
the players to move from a local optimum state and to start
negotiating towards a new NE. Note that for (γ = 0), we
actually have the better response learning scheme, in which
the player “jumps” from one strategy to the other.

In addition, the γ parameter is responsible to control the
trade-off between the algorithm’s outcome performance and
convergence speed. A large smoothing factor provides an
extensive strategy search and slow convergence. On the other
hand, a small γ restricts the search and improves the conver-
gence speed. In our simulations, we follow the same concept
as in [25] that was inspired on the concept of temperature on
simulated annealing. Thus, we set γ = 10/k2, where k stands
for the negotiation step.

We propose the following negotiation based algorithm that
converges to NE with a high probability. We assume identical
MRs, each of which has a unique identification parameter
aiID for routing purpose. In addition, we generalize the
finalization criteria, T , which can be met by following different
parameters, e.g., maximum number of negotiations, time limit,
or utility function threshold. In this paper, we will employ the
maximum number of negotiations as the finalization criteria,
T . Now that we have described all the parameters associated
with our proposed approach CoCAG, the algorithmic steps are
summarized in Algorithm 1.

Algorithm 1 Cooperative Channel Assignment Game
(CoCAG)
1: si = {0} ∀ai ∈ A
2: while T = 0 do
3: Randomly select ai with prob. 1/N
4: srand

i ← random strategy {ki,1, . . . , ki,c, . . . , ki,|C|}
5: while srand

i 6= valid strategy do
6: srand

i ← random strategy
7: end while
8: if p(srand

i , sti ) ≥ random number [0, 1] then . Eq. (9)
9: st+1

i ← srand
i

10: else
11: st+1

i ← sti
12: end if
13: Broadcast aiID + st+1

i
14: Update T
15: end while

In literature, several metrics have been proposed to quanti-
tatively measure algorithms’ limitations due to resource con-
straints, e.g., lack of information for on-line algorithms and
lack of unbounded computational resources for approximation
algorithms. Regarding the game theory field, an important

metric is the cost due to lack of coordination in distributed
algorithms. This metric is called Price of Anarchy (PoA),
which evaluates the performance loss due to the lack of a
centralized coordination. In the next section, the PoA analysis
is presented for our proposed CoCAG algorithm.

V. PRICE OF ANARCHY ANALYSIS

As previously mentioned, while negotiating strategies, play-
ers can be trapped at local optimum points where none
of the players are willing to change strategies even if the
system performance is yet distant from the desirable global
optimum. To quantitatively measure the loss of performance
in such scenarios, Koutsoupias and Papadimitriou proposed
in [26] the concept of Price of Anarchy dubbed as PoA.
When applied to maximization games, PoA indicates the ratio
between the global optimum and the worst possible NE that
can be interpreted as the system loss due to the lack of a
centralized coordination.

Definition 2. Price of Anarchy

PoA =
max UNET (Ψ

′
)

min UNET (Ψ
′′)
,Ψ
′
,Ψ
′′
∈ NE. (10)

In order to calculate the PoA, the minimum NE can be
derived from the following lemma.

Lemma 2. The worst NE for MRMC networks is the common
channel assignment: UCCNET (Ψ)

Proof: If (n − 1) nodes are connected using the same
channel, the nth node can also connect to the network by
choosing this channel and increase the utility function (3),
which contradicts the NE definition. Hence, the condition
that n nodes connect to the gateway should be satisfied.
Furthermore, all nodes sharing the same channel yields the
highest level of interference which brings (3) to its minimum
for the case of n connected nodes.

Due to the high complexity of MRMC networks exploiting
overlapping channels, to simply derive the maximum NE is
arguably unfeasible. Therefore, we provide, in this paper, the
PoA resulted from the simulations by using the CoCAG algo-
rithm. In addition, we derive the PoA upper bound for MRMC
networks by using the non-interfering links generalization,
which is defined in the following lemma.

Lemma 3. The best NE for MRMC networks is a topology
with Non-Interfering links and hop count is the Shortest Path:
UNI−SPNET (Ψ)

Proof: In order to derive the maximum NE consider the
following illustration. A simple network composed of three
nodes (n1, n2, n3) equipped with 2 radios each (ni = [r1i , r

2
i ]),

where r1i represents the channel which the first radio was
assigned to . They are positioned in a linear topology and
n2 in the center is the gateway. The maximum NE, according
to the utility function (3), will occur when the link between
nodes are non-interfering to each other, since none of the
nodes will deviate from this state unilaterally and at this point
UNET reaches its maximum, n1 = [1, 0], n2 = [1, 8], and
n3 = [8, 0] for instance. To extend this illustration for more



nodes and more generic topologies, we need to address the
hop count, since various nodes connecting to the gateway
using just non-interfering links is unfeasible considering the
channel bandwidth available in IEEE 802.11 technologies.
Consequently, in a generic topology containing n nodes,
the maximum NE should have just non-interfering links. In
addition, the hop count should be the shortest path to the
gateway in order to maximize (3).

Note that MRMC networks comprise a wider range of tech-
nologies than IEEE 802.11g, covered in this article. Therefore,
the assumption of non-interfering links is reasonable when
deriving a generic best NE for MRMC. For instance, IEEE
802.11a, which can have up to 12 orthogonal channels, and
also networks using directional antennas, can arguably possess
just non-interfering links.

Theorem 1. The upper bound for the PoA in MRMC networks.

PoA =
UNI−SPNET (Ψ)

UCCNET (Ψ)
(11)

Proof: Direct application of Lemma 2 and Lemma 3

VI. PERFORMANCE EVALUATION

In this section, we evaluate our game theoretic CA algo-
rithm. We also compare them against three heuristic algo-
rithms. Two of the heuristic algorithms are based on exploiting
POC and the other one is based upon the traditional orthogonal
channel approach [27]. The comparison is performed in terms
of the utility function and convergence time. Regarding game
theoretic algorithms, we exemplify the network reaching the
NE through the negotiations among players. Later, we provide
the results for the PoA.

The simulation scenario was configured using JAVA as
follows. A grid topology is constructed on the backbone. The
grid step is set to 120 m, which is the distance between
adjacent nodes. The node positioned in the bottom right corner
is assumed to be the gateway. IEEE 802.11g is used as the
wireless technology. MCS 6 Mbit/s is set as link data rate. In
our experiments, we vary the grid size by 9, 12, 16, 20, and
25 nodes.

In Fig. 1, we illustrate the negotiation process reaching
the NE. This is a small topology consisting of 5 nodes. We
estimate the global optimum using a centralized brute force
algorithm. The nodes were placed using a square topology, in
which four nodes are located at the corners and one node
is positioned at the center. The gateway is positioned at
the corner to stimulate a multi-hop topology. We simulate
the Smooth Best Response (SBR) learning scheme, which
corresponds to CoCAG algorithm, setting T = 50 iterations
and repeating the simulation using 100 random seeds to
calculate the average. The curve SBR100 represents the average
after 100 simulations. This curve is classified as near-optimal
because although the algorithm sometimes reaches global-
optimum, it may also generate sub-optimal results when nodes
find themselves trapped in a local optimum NE.

In Fig. 2, we compare the outcome of heuristic and game
theoretic algorithms. As for heuristic algorithms exploiting
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Fig. 1. Channel Assignment Negotiations.

partially overlapped channels, we use two algorithms that are
extensively described in our earlier work [8]. The algorithm
referred to as Heuristic Partially Overlapped Channel Assign-
ment (HPOCA) was our previously proposed one, and the one
named by “original” was originally proposed in [7]. In short,
HPOCA measures the traffic load for each link and orders the
links in descending order of traffic load. Then, it assigns chan-
nels to the ordered links prioritized by higher weights using
the same interference model as described in this paper. After
this step, the channel assignment is composed of only non-
interfering links, however the network fully connectivity is not
yet addressed. Later, it addresses the disconnected nodes, by
assigning to them channels that will generate only co-channel
interfering links, which is less harmful than adjacent channel
interference. On the other hand, the “original” algorithm has
a different approach. Instead of ordering links, it orders nodes
in a descending order of the number of links, i.e., node degree,
and it does not take into account the connectivity issue.

In addition to these partially overlapping channel assign-
ment algorithms, we include one more CA protocol called
Hybrid Multi-Channel Protocol (HMCP) [27], which uses the
traditional non-overlapping CA. Briefly, in HMCP each node
uses two radios to communicate. Each radio has different
tasks to perform. The first radio uses a fixed channel and
is responsible for receiving data while the second radio has
a switchable nature, and it changes its channel to reach
the neighbors’ fixed radio. Each node maintains the table
describing the neighbors’ fixed channel and exploits it to
lookup for the destination node’s channel.

First, as expected among the heuristic algorithms given
our previous work [8], HPOCA generates the best perfor-
mance. This result corroborates the simulations from that
paper. Second, when comparing game theoretic algorithms,
we observe that SBR (CoCAG) algorithm produces a better
result than BR, which corresponds to the CoCAG algorithm
using Better Response equation (8). This is based on the fact
that in average, SBR reached more often the global optimum.
SBR and BR are obtained from the average values from 100
repetitions. When we compare HPOCA against the average
values of BR and SBR, it has a superior performance than
BR and nearly the same as SBR. Hence, we conclude that



HPOCA also has a near-optimal performance.
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From our simulations, we experimentally derive the global
optimum, shown by the MaxSBR. It is important to stress
that although the HPOCA does not achieve the optimal re-
sults, it has a strong comparative advantage against the game
theoretic algorithms, and it has a faster convergence. Due to
the numerous negotiation interactions required by the game
theoretic algorithms, the proposed algorithm reaches near-
optimal performance faster than the former, as shown in Fig.
3.

In order to derive the time performance, we used the
following rationale. All the algorithms have two distinct steps,
namely negotiation and operation phases. In the negotiation
phase, all nodes operate using a common channel to exchange
the messages, which guarantees the distributed coordination of
the algorithms. This is necessary to avoid deafness problems,
i.e., nodes trying to exchange control messages. But, since the
nodes are operating in different channels, the message would
not be detected by the destination nodes. For HPOCA, the
negotiation phase is preceded by the learning phase, in which
every node sends the same amount of traffic to the gateway
within a sixty seconds window, and the traffic is routed using
Optimized Link State Routing Protocol (OLSR). The traffic
load for each link is calculated and it will be used as input for
the channel assignment algorithm as explained in [8]. During
the negotiation phase, for each decision, in other words, for
assigning a channel to a link in heuristic algorithms or deciding
a strategy in game theoretic algorithms, the nodes have a
conservative 200ms window to broadcast their decisions. After
assigning channels to all links or after the finalization criteria
T is met, the algorithms switch to operation phase. And just
at this point, they actually switch channels on the radios.

Regarding the ratio between the best and the worst NEs,
we found a considerably high value. The Price of Anarchy
for topologies 9, 12, 16, 20 and 25 are found to be 8.72,
9.56, 10.18, 10.76 and 10.96, respectively. It means that the
network can be operating approximately 8 to 11 times worse,
considering the utility function, when the players are trapped
at the worse NE. However, the probability of all the players,
after so many negotiation steps, to choose the common channel
topology reaching the minimum NE, is extremely low, i.e.,

nearly impossible. During our extensive experiments, none of
the simulations resulted in such an NE. Consequently, this
value should be read as a theoretically possible performance
difference due to distributed coordination of the algorithm as
opposed to the centralized one. In Fig. 4, we also show the
upper bound for the PoA resulted from Theorem 1. In this case,
since the minimum NE is the same, the maximum NE was
improved by using only non-interfering links and the shortest
path as hop count, hence yielding a higher PoA.
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VII. CONCLUSION

In this paper, to solve the channel assignment problem, we
envisioned a novel distributed channel assignment algorithm
for Wireless Mesh Networks by exploiting partially overlapped
channels from a game theoretical approach, which reaches
optimal performance. In our algorithm, we exploited partially
overlapped channel assignment following the latest research
trends in the field. From the simulation results and analysis,
we conclude that if well managed, overlapping channels can
clearly overcome the overall performance of the prevalent
channel assignment strategy using just the three orthogonal
channels. Such improvements can be measured as network
throughput, channel spatial re-use, and non-interfering links.
We also derived the upper bound for the Price of Anarchy for



using our proposed approach in Multi-Radio Multi-Channel
networks.
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