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Abstract—This paper examines the optimal forwarding prob-
lem in mobile ad hoc networks (MANETs) based on a generalized
two-hop relay with limited packet redundancy f (f -cast) for
packet routing. We formulate such problem as a forwarding
game, where each node i individually decides a probability τi
(i.e., a strategy) to deliver out its own traffic and helps to forward
other traffic with probability 1−τi, τi ∈ [0, 1], while its payoff is
the achievable throughput capacity of its own traffic. We derive
closed-form result for the per node throughput capacity (i.e.,
payoff function) when all nodes play the symmetric strategy
profiles, identify all the possible Nash equilibria of the forwarding
game, and prove that there exists a Nash equilibrium strategy
profile that is strictly Pareto optimal. Finally, for any symmetric
profile, we explore the possible maximum per node throughput
capacity and determine the corresponding optimal setting of f
to achieve it.

Index Terms—Mobile ad hoc networks, throughput capacity,
Nash equilibrium, two-hop relay, packet redundancy.

I. INTRODUCTION

The mobile ad hoc network (MANET) is a highly flexible

and self-autonomous wireless network architecture, where

mobile nodes freely communicate with each other via wireless

channels without any infrastructure support or centralized

management [1], [2]. Since MANETs can be rapidly deployed,

extended and reconfigured at very low cost, such networks are

promising to support many important applications like disaster

relief, military troop communication, last-mile internet service,

etc., and thus they serve as one important class of network

architectures among next generation networks [3], [4].

Due to random node mobility in MANETs, the network

topology may vary dramatically and no contemporaneous end-

to-end path may ever exist at any given time instant [5]–[7].

The traditional route-based routing protocols such as DSR [8],

AODV [9], etc., fail to work properly as they require the

simultaneous availability of a number of links. As a “store-

carry-forward” kind of routing scheme, the two-hop relay,

which relies on the mobility of nodes and sequences of their

contacts to compensate for lack of continuous connectivity and

thus enable messages to be delivered from end to end, becomes
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a promising routing protocol for the MANETs [7], [10]–[13].

The two-hop relay and its variants, simple yet efficient, have

been proved to be able to provide a flexible control of both

the throughput and packet delay for the challenging MANETs

[7], [13]. Under such a routing protocol, the source node

replicates copies of its packets to other nodes (i.e., the relay

nodes) it encounters, and an intermediate relay node carrying

a copy can forward the copy only to the destination node

so the destination can receive a packet when meeting either

the source node or one of the relay nodes. Thus, each packet

travels at most two hops to reach its destination. In this paper,

we consider a generalized two-hop f -cast relay (2H-f for

short), which allows each packet to be replicated to at most f
distinct relay nodes.

In a general MANET, there may coexist multiple traffic

flows (each corresponds to one distinct source-destination

pair), so each node usually acts not only as a relay forwarding

packets for other nodes, but also as a source trying to deliver

out its own locally generated packets. Thus, whenever a

wireless link becomes available between a node pair, the trans-

mitting node (transmitter) likely have more incentive to deliver

out a new copy for its own packet rather than forwarding a

packet (if available) destined for the receiving node (receiver).

Such forwarding behaviors may become more significant (and

thus nodes become selfish) in MANETs where nodes not only

suffer from the severe channel contention and interference

issues but also operate under stringent energy consumption

constraints and QoS requirements in terms of throughput and

delivery delay. A significant amount of works has been done

to address such selfish issue in MANETs, like the selfish node

detection [14], [15], misbehavior tolerant schemes design [16],

security and trust management [17], cooperation incentive

stimulation [18]–[20], etc. However, the impact of selfish node

behaviors on the fundamental network performances, such as

the per node throughput capacity, message delivery probability

and delivery delay, still remains largely unknown by now.

In this paper, we develop a novel game-theoretic framework

to explicitly illustrate the relationship between forwarding

behaviors of nodes and the final achievable per node through-

put capacity. In particular, we study the following optimal

forwarding game: in a MANET adopting the 2H-f for packet

routing, each node individually decides a strategy in terms of

the probability that it delivers out packets of its own flow to a

node other than its destination; the target for each node here

is to maximize the achievable throughput capacity of its own

traffic flow, i.e., the maximum rate it can deliver traffic to its

destination.
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The main contributions of this paper are summarized as

follows:

• For a tagged flow, we first develop a Markov chain based

theoretical framework to characterize the complicated

packet dispatching process at its source and the packet

receiving process at its destination in the challenging

MANET environment. With the help of the framework,

we derive closed-form expressions for the achievable

per node throughput capacity when all nodes play the

symmetric strategy profiles.

• Based on the new throughput capacity results, we then

develop a novel game-theoretic framework to explore

the optimality properties of the forwarding game here.

We identify all the possible Nash equilibrium strategy

profiles, and prove that there exists a Nash equilibrium

which is strictly Pareto optimal.

• Finally, for any given symmetric strategy profile, we ex-

plore the maximum possible per node throughput capacity

and determine the corresponding optimal setting of f to

achieve it.

Related Works: The optimal control of two-hop relay

algorithm has been intensively explored in literature. Altman

et al. in [21] provided a general framework based on fluid

approximation for the optimal control of a broad class of

monotone forwarding policies including the two-hop relay.

Later, Altman et al. in [22] explored the general trade-offs

among message delay, energy and storage when the non-

monotone relay strategies are considered in the two-hop rout-

ing. The optimal control of two-hop relay was further explored

together with forward correction and fountain codes in [23],

and was explored together with Reed-Solomon type codes and

network coding in [24].

Altman et al. studied the optimal stochastic control of two-

hop relay in [25], where the stochastic approximation theory

was employed to avoid explicit estimation of network parame-

ters, such as the number of mobiles and their contact rates. The

optimal activation and transmission control of two-hop relay

for enhancing the energy saving policy were also explored

in the context of delay tolerant networks (DTNs) [26]. More

recently, the optimal forwarding in two-hop relay was further

explored under other scenarios, like for the heterogeneous

DTNs in [27], together with recovery process in [28], and

in the presence of competing pure relay nodes in [29].

It is notable that all the above works [21]–[29] mainly focus

on the optimization of message delivery probability under

specific energy constraints and message lifetime requirement

in the context of DTNs, in which the basic two-hop relay

was adopted for packet routing and a wireless link becomes

available whenever two nodes meet each other. Furthermore,

almost all these works assumed a single source-destination pair

in their analysis, where the source has only a single message

to be delivered to the destination and all other nodes act as

pure relay nodes. In this paper, however, we study the optimal

control of the generalized 2H-f relay under more general

traffic pattern in MANETs to maximize the corresponding per

node throughput capacity, here the important traffic contention,

medium contention and interference issues of MANETs are

(a) Cell partitioned network. (b) Illustration of transmission-
groups with α = 3.

Fig. 1. Network cell partition and transmission-groups.

carefully incorporated into the study. To the best of the our

knowledge, this work represents the first closed-form study of

the per node throughput capacity behavior in the challenging

MANETs from a game-theoretic perspective.

The remainder of the paper is organized as follows. Sec-

tion II introduces the system models, the transmission-group

based scheduling scheme, the 2H-f relay algorithm and the

forwarding game considered in this paper. We derive closed-

form expressions for the per node throughput capacity under

the forwarding game in Section III, and explore the Pareto

optimal Nash equilibrium and optimal setting of redundancy

limit f in Section IV. Section V provides numerical results

and Section VI concludes the paper.

II. PRELIMINARIES

A. System Models

Similar to previous works [12], [13], [30]–[35], we consider

a time slotted network with n mobile nodes and a unit square

area evenly divided into m×m equal cells. The nodes roam

independently from cell to cell following the bi-dimensional

i.i.d. mobility model widely adopted in literature [12], [13],

[30], [32]–[35], where each node independently and uniformly

selects a cell among the m2 cells at the beginning of each time

slot and then stays inside for the whole time slot, as illustrated

in Fig. 1a.

We assume that each node conducts some form of proximity

wireless communications, such that a node in one cell can only

transmit to the nodes in the same cell or its eight adjacent

cells (two cells are called adjacent if they share a common

point). Thus, the node transmission range r can be determined

as r =
√
8/m. We focus on the scenario that only one-hop

transmission is possible during each time slot, where the total

amount of data that can be successfully transmitted per slot is

fixed and assumed to be one packet here. The simple protocol

model [36] is adopted to account for the interference constraint

among nodes.

This paper considers the permutation traffic pattern widely

adopted in previous studies [10], [33]–[35], [37], [38]. Under

such traffic pattern, there are in total n distinct flows (one flow

corresponds to one source-destination pair), and each node is

the source of its locally generated traffic flow and at the same

time the destination of the flow originated from another node.

With permutation traffic, each node can be a potential relay for
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other n − 2 flows (except the two flows originated from and

destined for itself), so each node may simultaneously carry

packets of at most n − 1 traffic flows. According to the 2H-

f algorithm, a node will choose to forward traffic for other

flows only when the node does not meet the destination of its

own outgoing flow. In light of the fact that in the real-world

MANETs some nodes may have no traffic to deliver or receive,

i.e., may serve as pure relays, the per node throughput capacity

derived under the permutation traffic pattern may serve as an

achievable lower bound.

Remark 1: As a common partition technique for time slot-

ted network, the general m×m cell partition actually enables a

flexible control of both the node movement speed and the node

transmission range to be made for the challenging MANET, by

accordingly setting the cell side length (or parameter m). Since

the network topology varies dramatically and the network

behavior can never be predicted under the bi-dimensional i.i.d.

mobility model, the network performance analysis derived

under such mobility model provides a meaningful bound in

the limit of infinite mobility. Furthermore, the results in [30]–

[32] indicate that the network throughput capacity derived

under the i.i.d. mobility model is actually identical to the

one derived under other non-i.i.d. mobility models (like the

Markovian random walk model and random waypoint model)

if they follow the same steady state channel distribution.

B. Transmission-Group Based Scheduling

According to the protocol interference model, multiple links

can transmit simultaneously without interfering with each

other if and only if they are mutually far away enough [39],

[40]. To support as many simultaneous link transmissions

as possible, we consider here a transmission-group based

scheduling scheme similar to that of [12], [34], [35], [41].

Transmission-group: As illustrated in Fig. 1b that a

transmission-group is a subset of cells, where any two of them

have a vertical and horizontal distance of some multiple of α
cells and all of them could conduct transmissions simultane-

ously.

Based on the protocol interference model with guard factor

∆ [36], the parameter α should be set properly according

to ∆ to ensure the successful transmissions of all links in

the same transmission-group. Notice that we assume for each

node a transmission range r =
√
8/m here, by applying some

derivations similar to that in [32] it is easy to see the parameter

α can be determined as

α = min{⌈(1 + ∆)
√
8⌉+ 2,m} (1)

Based on the parameter α in (1), we can divide all m2 cells

into α2 transmission-groups such that each cell belongs to a

distinct transmission-group. If the transmission-groups become

active (i.e., get transmission opportunity) alternatively, then

each cell becomes active in every α2 time slots. If there

are more than one nodes inside an active cell, a transmitting

node (transmitter) is randomly selected in a distributed way

according to the method introduced in [12]. The selected node

then follows the following two-hop f -cast relay for packet

routing.

C. Two-Hop f -cast Relay Algorithm

A generalized two-hop f -cast (2H-f ) relay is adopted here

for packet routing [7], [12], [30], where f is the packet

redundancy limit, 1 ≤ f ≤ n − 2. Under such a relay

algorithm, each packet can be replicated to at most f distinct

relay nodes by its source and all packets of a flow should

be received in order at their destination. It is notable that

with the 2H-f relay, each packet may have at most f + 1
redundant copies (including the original one at its source) in

the transmission process.

Without loss of generality, henceforth we focus on a tagged

flow and use S and D to denote its source and destination,

respectively. To facilitate the in-order packet reception at D,

S labels each locally generated packet (say P ) with a unique

sequence number SN(P ), and D maintains a request number

RN(D) to denote the sequence number of the packet currently

under request (in other words, D has already received all

packets with sequence numbers less than RN(D)).

Every time S is selected as the transmitter in an active

cell, it conducts the “source-to-destination” transmission and

delivers a packet to D if D is in its one-hop transmission

range (i.e., in its cell or one of its eight adjacent neighboring

cells); otherwise, S randomly selects a node (say R) as the

receiver among its one-hop neighborhood, and then conducts

with R the “source-to-relay” transmission with probability τ
and the “relay-to-destination” transmission with probability

1− τ , τ ∈ [0, 1].

D. Forwarding Game

In the above 2H-f relay, a node S tries to deliver out a new

copy for the current head-of-line packet of its own flow with

probability τ while helping to forward a packet of another

flow with probability 1 − τ , τ ∈ [0, 1]. It is notable that

such forwarding behavior can be nicely modeled as a n-node

forwarding game (S,P) with strategy profile S = S1×S2 . . .×
Sn and payoff function P = (µ1(τττ), µ2(τττ), . . . , µn(τττ)), where

Si represents the strategy set for node i, and µi(τττ) denotes

the payoff obtained by node i under strategy profile τττ ∈ S.

Suppose that each node i ∈ [1, n] individually decides its

strategy as τi ∈ Si (i.e., it delivers out a new copy for the

current head-of-line packet of its own flow with probability

τi while helping to forward a packet of another flow with

probability 1 − τi), the overall strategy profile is thus τττ =
(τ1, τ2, . . . , τn), and we then define the payoff µi(τττ) for node i
as the achievable throughput capacity of its own flow under the

strategy profile τττ . For simplicity, we denote by τττ = (τi, τ−i) a

strategy profile, where τ−i is the strategies of all nodes except

for node i. We refer to a strategy profile with all nodes playing

the same strategy as a symmetric strategy profile, or, if such a

profile is a Nash equilibrium, a symmetric Nash equilibrium.

Remark 2: It is easy to see that in the above forwarding

game (S,P), all nodes have identical strategy sets, i.e., Si =
[0, 1] for all 1 ≤ i ≤ n. It is also noticed that µi(τi, τ−i) =
µj(τj , τ−j) for τi = τj and τ−i = τ−j for all i, j ∈ [1, n].
Thus, the forwarding game (S,P) is a symmetric game with

continuous strategies and continuous payoff functions.
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III. THROUGHPUT CAPACITY

In this section, we first introduce some basic probabilities

under the 2H-f relay, determine service times at the source

and destination of a tagged flow, and then use these results

to derive the per node throughput capacity (i.e. the payoff

function of a node) when all nodes play the symmetric strategy

profiles with τi = τ , 1 ≤ i ≤ n.

A. Some Basic Probabilities

Based on derivations similar to that of [13], we can establish

the following lemmas regarding some basic probabilities under

the 2H-f relay.

Lemma 1: For a given time slot and a tagged flow, we use

p1 and p2 to denote the probability that the source node S
conducts a source-to-destination transmission and the proba-

bility that S conducts a source-to-relay or relay-to-destination

transmission, respectively. Then we have

p1 =
1

α2

{

9n−m2

n(n− 1)
−

(

m2 − 1

m2

)n−1
8n+ 1−m2

n(n− 1)

}

(2)

p2 =
1

α2

{

m2 − 9

n− 1

(

1−
(

m2 − 1

m2

)n−1)

−
(

m2 − 9

m2

)n−1}

(3)

Lemma 2: For a given time slot and a tagged flow, suppose

the source node S is delivering copies for packet P which

has already j copies in the network (including the original

one at S), and the destination node D is also requesting for

P , i.e., the sequence number SN(P ) and the request number

RN(D) satisfy SN(P ) = RN(D). For the next time slot,

we use Pr(j), Pd(j) and Ps(j) to denote the probability that

D will receive P , the probability that S will successfully

deliver out a copy of P to a new relay (if j ≤ f ) and

the probability of simultaneous source-to-relay and relay-to-

destination transmissions, respectively. Then we have

Pr(j) = p1 + (1− τ) · (j − 1)p2
n− 2

(4)

Pd(j) = τ · (n− j − 1)p2
n− 2

(5)

Ps(j) =
(τ − τ2)(j − 1)(n− j − 1)(m2 − α2)

m2α4

n−5
∑

k=0

(

n− 5

k

)

·h(k)
{ n−4−k

∑

t=0

(

n− 4− k

t

)

h(t)
(

1− 18

m2

)n−4−k−t
}

(6)

where

h(x) =
9
(

9
m2

)x+1 − 8
(

8
m2

)x+1

(x+ 1)(x+ 2)
(7)

B. Service Times at Source S and Destination D

To determine the service times at the source S and the

destination D of a tagged flow, we first define two queues

illustrated in Fig. 2. As we can see that the first queue is a

local queue at S, which stores the locally generated packets

and operates as follows: every time a local packet arrives at

Fig. 2. Illustration of the local queue at the source S and the virtual queue
at the destination D.

(a) Absorbing Markov chain for the packet dispatching process at
the source node S.

(b) Absorbing Markov chain for the packet receiving process at the
destination node D.

Fig. 3. Absorbing Markov chains for a general packet P of the tagged
flow, given that the destination node D starts to request for P when there are
already k copies of P in the network. For each transient state, the transition
back to itself is not shown for simplicity.

S, it is put to the end of the queue; every time S finishes the

copy dispatching for the head-of-line packet, S takes it out of

the queue and moves ahead the remaining packets behind it.

Thus, the head-of-line packet of the local queue is the one for

which S is currently distributing copies.

The second queue is a virtual queue defined at node D,

which stores only the sequence numbers of those packets not

received yet by D and operates as follows: every time a packet

P is moved to the head-of-line of the local queue at S, the

corresponding packet sequence number SN(P ) is put to the

end of the virtual queue; every time D receives a packet whose

sequence number equals to the head-of-line entry, D moves the

head-of-line entry out of the virtual queue and moves ahead the

remaining entries. Thus, the head-of-line entry of the virtual

queue is the sequence number of the packet that D is currently

requesting for, i.e., the RN(D).

Now, the service time at S and D can be defined as follows:

Definition 1: For a packet P of the tagged flow, its service

time at the source S is defined as the time elapsed between

the time slot when S starts to deliver copies for packet P and

the time slot when S stops distributing copies for P .

Definition 2: For a packet P of the tagged flow, its service

time at the destination D is defined as the time elapsed

between the time slot when D starts to request for packet

P and the time slot when D receives P .

For a general packet P of the tagged flow, suppose that there

are k copies of P in the network (including the original one
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at the source S) when the destination node D starts to request

for P , 1 ≤ k ≤ f + 1. If we denote by state A the absorbing

state (i.e., the termination of the service process) for P , then

the service processes for the packet P at its source S and at

its destination D can be defined by two finite-state absorbing

Markov chains shown in Fig. 3a and Fig. 3b, respectively.

Suppose that there are k copies of P in the network when

D starts to request for the packet, we denote by XS(k) and

XD(k) the corresponding service time of the packet P at S
and D, respectively. From the theory of Markov chain [42]

we know that XS(k) is the time the Markov chain in Fig. 3a

takes to become absorbed given that the chain starts from the

state 1, and XD(k) is the time the Markov chain in Fig. 3b

takes to become absorbed given that the chain starts from the

state k. Based on the Markov chain in Fig. 3, we have the

following results regarding the expected values E{XS(k)} and

E{XD(k)} of XS(k) and XD(k).
Lemma 3: For a packet P of the tagged flow, suppose that

there are k copies of P in the network when the destination

D starts to request for P , 1 ≤ k ≤ f + 1, then we have

(1) when 0 < τ ≤ 1,

E{XS(k)} =











∑k−1
i=1

1
Pd(i)

+ 1
p1+Pd(k)

·
(

1 +
∑f−k

j=1 φ1(k, j)
)

if 1 ≤ k ≤ f,
∑f

i=1
1

Pd(i)
if k = f + 1.

(8)

E{XD(k)} =











































1
Pr(k)+Pd(k)−Ps(k)

(

1 +
∑f−k

j=1 φ2(k, j)

+Pd(f)−Ps(f)
Pr(f+1) φ2(k, f − k)

)

if 1 ≤ k ≤ f − 1,
1

Pr(f)+Pd(f)−Ps(f)

(

1 + Pd(f)−Ps(f)
Pr(f+1)

)

if k = f,
1

Pr(f+1) if k = f + 1.
(9)

where

φ1(k, j) =

j
∏

t=1

Pd(k + t− 1)

p1 + Pd(k + t)

φ2(k, j) =

j
∏

t=1

Pd(k + t− 1)− Ps(k + t− 1)

Pr(k + t) + Pd(k + t)− Ps(k + t)

(2) when τ = 0, only the case k = 1 happens1 and we have

E{XS(1)} = E{XD(1)} =
1

p1
(10)

Lemma 4: For any 1 ≤ k ≤ f , we have

(1) when 0 < τ < 1,

E{XS(k)} < E{XS(k + 1)} (11)

E{XD(k)} > E{XD(k + 1)} (12)

(2) when τ = 1,

E{XS(k)} < E{XS(k + 1)} (13)

E{XD(k)} = E{XD(k + 1)} (14)

1Under the extreme case τ = 0, each packet has only one copy (the
original one at its source) when its destination starts to request for it, and
the destination can only receive the packet directly from its source.

Remark 3: The proofs of above lemmas are similar to that

in [12]. The basic idea behind the proof of Lemma 3 is to

show that for the Markov chains in Figs. 3a and 3b, the

corresponding absorbing time can be actually derived based

on recursive calculation technique.

C. Per Node Throughput Capacity

With the help of the results in Lemmas 3 and 4, we can

establish the following theorem on the per node throughput

capacity.

Theorem 1: For the cell partitioned MANET considered in

this paper, where each node moves according to the i.i.d.

mobility model and follows the 2H-f relaying algorithm for

packet routing, if we denote by µ(τττ) the per node throughput

capacity (i.e. the payoff function of a node) when all nodes

play the symmetric strategy profile τττ with τi = τ , 1 ≤ i ≤ n,

then we have

µ(τττ) =

{

min{G1(τ, f), G2(τ, f)} if 0 < τ < 1,

p1 if τ = 0 or τ = 1.
(15)

where

G1(τ, f) = p1 +
(1− τ) · f · p2

n− 2
(16)

G2(τ, f) =
p1 + τ · p2

1 +
∑f−1

j=1

∏j

t=1
(n−t−1)·τ ·p2

(n−2)·p1+(n−t−2)·τ ·p2

(17)

Proof: We first consider the case 0 < τ < 1. Lemmas 3

and 4 indicate that under the 2H-f relay algorithm, the

parameter k is automatically updated from packet to packet to

adjust to the service rates at S and D. Based on this intrinsic

feature of automatic updating for parameter k, we can model

the packet delivery process of the tagged flow as an automatic

feedback control system [32]. Thus, according to Theorem 1 in

[32], the per node throughput capacity µ(τττ) here is determined

as

µ(τττ) = min

{

1

E{XD(f + 1)} ,
1

E{XS(1)}

}

(18)

The (15) then follows after substituting (8) and (9) into (18).

Regarding the cases τ = 0 and τ = 1, it’s easy to see that

for a tagged flow, its destination node D will receive every

packet only from its source node S. Thus, we have µ(τττ) = p1.

IV. OPTIMALITY

Based on the payoff function of a node (i.e. per node

throughput capacity) derived in Section III, this section first

identifies all the possible Nash equilibrium strategy profiles,

and then proves that there exists a Nash equilibrium strategy

profile which is strictly Pareto optimal. Finally, we explore the

maximum possible per node throughput capacity for any given

symmetric strategy profile and determine the corresponding

optimal setting of f to achieve it.
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A. Nash Equilibrium and Pareto Optimality

Recall that in this paper we consider a forwarding game

(S,P) where each node i individually selects a strategy τi
with the aim of maximizing its own payoff µi(τi, τ−i). We

first establish the following two lemmas, which will help us

to identify all the Nash equilibria and also the Pareto optimal

Nash equilibrium for the above forwarding game.

Lemma 5: Given that all nodes play the symmetric strategy

profile τττ with τi = τ , i ∈ [1, n]. For any given packet

redundancy limit f ∈ [1, n − 2] and the two functions

G1(τ, f) and G2(τ, f) defined in (16)-(17), there exists a

unique τ∗ ∈ (0, 1) such that

τ∗ = arg0<τ<1{G1(τ, f) = G2(τ, f)} (19)

and

G1(τ, f) > G2(τ, f) for ∀ τ ∈ (0, τ∗) (20)

G1(τ, f) < G2(τ, f) for ∀ τ ∈ (τ∗, 1) (21)

Proof: We first prove that for any given f ∈ [1, n − 2]
there exists a unique τ∗ that satisfies (19).

Notice that

G1(τ, f)|τ→0 = p1 +
f

n− 2
· p2 (22)

G2(τ, f)|τ→0 = p1 (23)

G1(τ, f)|τ→1 = p1 (24)

G2(τ, f)|τ→1 > p1 (25)

where (25) follows because G2(τ, f) = 1
E{XS(1)} and

E{XS(1)}|τ=1 < 1
p1

, as can be proved recursively based on

the Markov chain in Fig. 3a.

It’s easy to see that for any given f , G1(τ, f) monotonically

decreases as τ increases, while the Markov chain in Fig. 3a

indicates that as τ increases, E{XS(1)} monotonically de-

creases and thus G2(τ, f) monotonically increases. Combining

the results in (22), (23), (24) and (25), we can see that only a

unique solution τ∗ exists for (19).

Since for a fixed f , G1(τ, f) (resp. G2(τ, f)) monotonically

decreases (increases) as τ increases and there is a unique

solution to (19), we can see from (22) and (23) that G1(τ, f) >
G2(τ, f) if 0 < τ < τ∗ , and we can see from (24) and (25)

that G1(τ, f) < G2(τ, f) if τ∗ < τ < 1. This finishes the

proof for Lemma 5.

Lemma 6: For any given packet redundancy limit f ∈
[1, n− 2], if all nodes play symmetric strategy profiles in the

forwarding game (S,P), then each node i (i ∈ [1, n]) can

obtain the maximum payoff by selecting the strategy τi = τ∗,

where τ∗ is given by (19).

Proof: By combining the per node throughput capacity

result (15) in Theorem 1 and (19), (20) and (21) in Lemma 5,

it follows that each node i obtains the maximum payoff by

choosing τi = τ∗.

As indicated in Remark 2 that the forwarding game (S,P)
considered in this paper is a symmetric game with continuous

strategies and continuous payoff functions, and thus there is

often a Nash equilibrium (i.e., the symmetric Nash equilib-

rium) where all nodes are playing the same strategy. The

following theorem identifes the possible Nash equilibria of

the forwarding game.

Theorem 2: For the forwarding game (S,P), any symmet-

ric strategy profile τττ with τi = τ , i ∈ [1, n], is a Nash

equilibrium if τ∗ ≤ τ ≤ 1, where τ∗ is determined by (19).

Proof: According to the definition of Nash equilibrium,

we only need to prove that when τ∗ ≤ τ ≤ 1,

∀ i ∈ [1, n], τ
′

i ∈ Si, τ
′

i 6= τ : µi(τ, τ−i) ≥ µi(τ
′

i , τ−i)

(26)

We first prove the case that τ∗ ≤ τ < 1. For a tagged node

i, from its payoff function (15) we can see that the function

G1(τ, f) there is only affected by the strategies of all other

nodes (i.e., τ−i), while the function G2(τ, f) is affected only

by the strategy of node i (i.e., τi). With a little abuse of the

notations, we use G1(τ−i, f) and G2(τi, f) to represent these

two functions, respectively.

When all nodes except the node i play the strategy τ ,

τ∗ ≤ τ < 1, the function G1 is always fixed as G1(τ−i, f).
Suppose that the node i selects another strategy τ

′

i 6= τ , only

G2 is updated to G2(τ
′

i , f). Since τ
′

i 6= τ , we may have

G2(τ
′

i , f) < G1(τ−i, f) or G2(τ
′

i , f) ≥ G1(τ−i, f). From

the payoff function (15) we can see that for the first case,

we have µi(τ, τ−i) > µi(τ
′

i , τ−i); while for the latter case,

we have µi(τ, τ−i) = µi(τ
′

i , τ−i). Thus, we can see that (26)

holds and the node i cannot profit from its unilateral deviation

in the strategy profile τττ .

Regarding the case that τ = 1, since each node only delivers

out its own traffic and no one will act as a relay, we always

have µi(τ, τ−i) = µi(τ
′

i , τ−i) = p1 for all i ∈ [1, n]. Then we

complete the proof for Theorem 2.

Among all the Nash equilibria identified in Theorem 2,

the following theorem shows that there exists a unique Nash

equilibrium which is strictly Pareto optimal.

Theorem 3: The Nash equilibrium τττ∗ = (τ∗, τ∗, . . . , τ∗),
where τ∗ is determined as (19), is strictly Pareto optimal.

Proof: We can see from Lemma 6 and Theorem 2 that

among all the Nash equilibria, each node i ∈ [1, n] can obtain

its maximum payoff (i.e., the maximum throughput capacity)

only with the Nash equilibrium τττ∗ = (τ∗, τ∗, . . . , τ∗). Thus,

the Nash equilibrium strategy profile τττ∗ is strictly Pareto

optimal.

Remark 4: All the Nash equilibrium strategy profiles iden-

tified in Theorem 2 are weak Nash equilibria. The result in

Theorem 3 indicates that for the concerned MANET oper-

ating under the 2H-f relay, each node there should adopt

the optimal forwarding strategy τ∗, i.e., the Pareto optimal

Nash equilibrium, to ensure the optimum per node throughput

capacity. Notice that in the forwarding game (S,P), we

consider a fixed ad hoc environment where no nodes will

join or secede from the network. Based on our game-theoretic

framework, therefore, each node needs only to acquire the

network size n (i.e., the number of nodes) before it is able

to decide individually the optimal forwarding strategy τ∗. In
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the implementation of the forwarding game, each node may

employ a network size estimation technique to acquire (or

approximate) the network size, such as the capture-recapture

method [43], the churn adaptive approach [44], the random

tour and gossip-based aggregation algorithms [45], etc.

B. Optimal Setting of f

This section further explores the optimal setting of packet

redundancy limit f for the maximization of per node through-

put (15) under any symmetric strategy profile τττ with τi = τ ,

0 < τ < 1, i ∈ [1, n].
Theorem 4: For the forwarding game (S,P) and any given

symmetric strategy profile τττ with τi = τ , 0 < τ < 1, i ∈
[1, n], there exists an optimal packet redundancy limit f∗ such

that each node achieves the maximum per node throughput

capacity µ∗ determined as:

(1) if 0 < τ ≤ 1
n−1 ,

f∗ = 1 (27)

µ∗ = p1 + τ · p2 (28)

(2) if 1
n−1 < τ ≤ τ1,

f∗ =

{

f0 if G1(τ, f0) ≥ G2(τ, f1),

f1 if G2(τ, f1) > G1(τ, f0).
(29)

µ∗ = max{G1(τ, f0), G2(τ, f1)} (30)

(3) if τ1 < τ < 1

f∗ = n− 2 (31)

µ∗ = p1 + (1− τ) · p2 (32)

where

f0 = max{f ∈ [1, n− 2]|G1(τ, f) ≤ G2(τ, f)} (33)

f1 = min{f ∈ [1, n− 2]|G2(τ, f) ≤ G1(τ, f)} (34)

τ1 = arg0<x<1{G1(x, n− 2) = G2(x, n− 2)} (35)

Proof: Since the equation (19) in Lemma 5 holds for any

f ∈ [1, n − 2], for the specific setting of f = n − 2 we can

certainly determine a value τ1 according to (35). Based on

(20) and (21), we know that

G1(τ, n− 2) > G2(τ, n− 2) if 0 < τ < τ1 (36)

G1(τ, n− 2) < G2(τ, n− 2) if τ1 < τ < 1 (37)

Similarly, for the setting f = 1, we can also determine a

value τ0 as τ0 = arg0<x<1{G1(x, 1) = G2(x, 1)} = 1
n−1 ,

where

G1(τ, 1) > G2(τ, 1) if 0 < τ < τ0 (38)

G1(τ, 1) < G2(τ, 1) if τ0 < τ < 1 (39)

We now show that τ1 > n−2
n−1 > τ0. Notice that

G1(
n− 2

n− 1
, n− 2) = p1 +

p2
n− 1

(40)

and

G2(
n− 2

n− 1
, n− 2) < (p1 + Pd(f))|f=n−2 (41)

= p1 +
p2

n− 1
(42)

where (41) follows because that G2(τ, f) = 1
E{XS(1)} and

E{XS(1)} > 1
p1+Pd(f)

. Combining (40) and (42), we then

have G1(τ, n − 2) > G2(τ, n − 2) for the setting τ = n−2
n−1 .

Thus, we can see from (36) that τ1 > n−2
n−1 > τ0.

We first consider the case that 0 < τ ≤ τ0 = 1
n−1 . Notice

that for any given τ ∈ (0, 1), as f increases, G1(τ, f) mono-

tonically increases while G2(τ, f) monotonically decreases.

From (36) and (38), we can see that if 0 < τ ≤ τ0, we

have G1(τ, f) ≥ G2(τ, f) for any f ∈ [1, n − 2]. Thus,

combining with (15), the maximum throughput capacity here

is determined as G2(τ, 1), so (27) and (28) follow.

Regarding the case that τ0 < τ ≤ τ1, we can see from (36)

and (39) that we can determine two values f0 and f1 of f
according to (33) and (34), respectively. Notice that for any

f ∈ [1, f0) we always have G1(τ, f) < G2(τ, f), and for any

f ∈ (f1, n − 2] we always have G2(τ, f) < G1(τ, f). Thus,

it is easy to see that (29) and (30) follow.

Finally, for the case that τ1 < τ < 1, we can see from (37)

and (39) that G1(τ, f) < G2(τ, f) for any f ∈ [1, n−2]. Thus,

the maximum per node throughput capacity can be determined

as G1(τ, n− 2), and (31) and (32) then follow.

V. NUMERICAL RESULTS

Based on the above theoretical framework, this section pro-

vides numerical results to illustrate the network performance

under a symmetric forwarding game. The guard factor ∆ is

fixed as ∆ = 1 here, so the parameter α for transmission-

group is determined as α = min{8,m}.

A. Per Node Throughput Capacity µ(τττ) vs. (τ, f)

We first explore how the per node throughput capacity µ(τττ)
(i.e., the payoff of each node) varies with both the packet

redundancy limit f and a strategy profile τττ with τi = τ for

all i ∈ [1, n]. For a network of n = 100 and m = 16,

we summarize the corresponding results in Fig. 4. One can

easily observe from Fig. 4a that for each setting of f ∈ [1, 32]
there, we can always find a corresponding optimum strategy

τ , i.e., the strictly Pareto optimal Nash equilibrium, to achieve

the maximum per node throughput capacity. For example, as

shown in Fig. 4b, when f = 5, 12 and 20, each node can obtain

a maximum throughput capacity of 8.883×10−4, 9.023×10−4

and 7.282 × 10−4 with the strategies of τ = 0.26, 0.68 and

0.88, respectively. Similarly, for each strategy τ , we can also

find an optimum setting of f such that the corresponding

per node throughput capacity is maximized. For example, as

shown in Fig. 4c, when τ = 0.40, 0.60 and 0.80, the maximum

per node throughput capacity of 9.373× 10−4, 9.253× 10−4

and 8.128× 10−4 are obtained by settings f = 7, 10 and 16,

respectively. The results in Fig. 4a also indicate clearly that for

the concerned network there does exist an optimal combination

(τ = 0.48, f = 8) of strategy profile τττ and packet redundancy

limit f at which the global maximum per node throughput

capacity 9.450× 10−4 is achieved.
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Fig. 4. Per node throughput capacity µ(τττ) vs. strategy τ and packet redundancy limit f for the network of n = 100 and m = 16.
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Fig. 5. Strictly Pareto optimal Nash equilibrum strategy τ∗ and the
corresponding optimum per node throughput capacity µ(τττ∗).

B. Pareto Optimal Nash Equilibrium τ∗ and µ(τττ∗) vs. n

Notice that for a network with a fixed f ∈ [1, n − 2],
there always exists a corresponding optimum strategy τ∗ (i.e.,

the Pareto optimal Nash equilibrium strategy) by which each

node obtains the optimum throughput capacity µ(τττ∗). Fig. 5

illustrates how such (τ∗, µ(τττ∗)) vary with network size n for

the settings of m = 24 and f = {10, 15, 25}. One can easily

observe from Fig. 5a that for each setting of f there, τ∗

monotonically decreases as n increases. This result indicates

for a larger network, each node there should forward packets

for others (rather than for itself) with a higher probability

so as to maximize the throughput capacity of its own flow.

It’s also notable that for a network with fixed size n, the

optimal strategy value τ∗ for a larger f also becomes larger,

which implies that for a fixed network size, if more packet

redundancy is allowed for each packet, each node should adopt

a higher probability to deliver copies for its own packets.

It is interesting to observe from Fig. 5b that for a given

setting of f there, we can always determine a suitable net-

work density (defined as n/m2) at which the corresponding

µ(τττ∗) is the maximum among all network densities. Actually,

such “optimal” network density increases as f increases. For

example, for the settings of f = 10, f = 15 and f = 25,

the corresponding maximum µ(τττ∗) is achieved at the network

densities of 0.161, 0.214 and 0.269, respectively. Therefore,

we can see that given the per node power constraint (related

to f ), the network density should be carefully designed so

as to maximize the per node throughput capacity there. It is

also notable that different from what is observed in Fig. 5a,

µ(τττ∗) varies differently with f under different region of n.

In particular, when 50 ≤ n ≤ 199, we have µ(τττ∗)|f=10 >
µ(τττ∗)|f=15 > µ(τττ∗)|f=25; when 200 ≤ n ≤ 349, we have

µ(τττ∗)|f=15 > µ(τττ∗)|f=10 > µ(τττ∗)|f=25; when 350 ≤ n ≤
536, we have µ(τττ∗)|f=15 > µ(τττ∗)|f=25 > µ(τττ∗)|f=10; when

537 ≤ n ≤ 1000, we have µ(τττ∗)|f=25 > µ(τττ∗)|f=15 >
µ(τττ∗)|f=10.

C. Optimum Setting f∗ and µ∗ vs. n

We further show in Fig. 6 that when all nodes follow

a given symmetric strategy profile τττ with τi = τ for all

i ∈ [1, n], how the optimum setting f∗ and the corresponding

maximum throughput capacity µ∗ vary with network size

n. One can easily observe from Fig. 6a that f∗ is a non-

decreasing piecewise function of n for each setting of τ there,

i.e., under a fixed τ , a specific value of f∗ can only apply

to a small range of n. It is also noticed that for a fixed n,

f∗ of a bigger τ is also bigger, i.e., if a higher probability

is adopted for each node to deliver out its own packets, more

redundancy should be allowed for each packet such that the
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Fig. 6. The optimum redundancy limit f∗ and the corresponding maximum
per node throughput capacity µ∗

per node throughput capacity is maximized, which is similar

to what is observed in Fig. 5a. A further careful observation

of Fig. 6a indicates that f∗ becomes more sensitive to the

variation of n when a larger value of τ is considered, which

implies that a setting of f∗ can be applied to a wider range

of n if the network operates under a smaller value of τ .

The results in Fig. 6b show that for all the three settings

of τ there, the general trends of µ∗ with n are actually very

similar, and they all diminish quickly as n increases. However,

it’s interesting to observe that under any fixed setting of n here,

we always have µ∗|τ=0.50 > µ∗|τ=0.30 > µ∗|τ=0.80. A further

careful observation of Fig. 6b indicates that, for each setting

of τ , µ∗ varies non-monotonically with n, which is especially

the case when n is relatively small. Specifically, µ∗ has two

different kinds of rise up behaviors as n increases. The first

kind happens in the range of n where a specific f∗ applies.

For example, for the setting τ = 0.50 (resp. τ = 0.30), a

maximum µ∗ of 6.478×10−4 (resp. 6.246×10−4) is achieved

when n ∈ [140, 167] (resp. n ∈ [124, 164]) where the optimum

setting f∗ = 11 (resp. f∗ = 7) is adopted. Therefore, we can

see that for a fixed combination of τ and f , there may exist

an optimum value of n to maximize the per node throughput

capacity. The second kind of rise up behavior happens near the

border of two ranges of network size n where different settings

of f∗ are adopted. For example, for the setting of f∗ = 11
with τ = 0.50 (resp. the setting of f∗ = 7 with τ = 0.30),

the µ∗ also rises up as n increases slightly beyond the border

value of n = 167 (resp. n = 164). Indeed, such fluctuation

behavior of µ∗ near the border values can be attributed to the

following reason: as a specific value of f∗ can only apply to a

small range of n, when n increases slightly beyond the border

value a new and bigger f∗ is adopted; since the number of

nodes n is small and the difference between n is also very

small, the adoption of bigger f∗ (i.e., more redundant copies)

dominates the impact on µ∗ and thus we have a sharp rise up

of µ∗.

VI. CONCLUSION

This paper developed a game-theoretic framework for in-

vestigating the optimal forwarding control issue of the general

2H-f relay algorithm in MANETs. For one MANET with any

specified setting of packet redundancy limit f , this framework

helps us to identify the optimal forwarding strategy that each

node should adopt to ensure the optimum per node throughput

capacity. On the other hand, for a MANET operating under any

specified forwarding strategy (including all the possible Nash

equilibrium forwarding strategies), this framework enables an

optimal setting of f to be determined for the maximization of

per node throughput capacity.

Our results in this paper indicate that for a fixed setting

of packet redundancy limit f , we can always find a suitable

network size (node density) such that the corresponding Pareto

optimal throughput is the maximum among all network sizes.

It is also interesting to notice that different from the general

intuitive expectation that as network size becomes larger, each

node should adopt a higher probability to forward packets for

other flows (rather than for its own flow) to maximize the

throughput capacity of its own flow.

The game-theoretic framework in this paper was developed

under the assumption of a fixed network environment, where

all nodes will move around in the network area and no new

nodes will join the network. Therefore, one of our future

research directions is to extend the theoretical framework

in this paper to explore the optimal forwarding strategies

of a varying ad hoc environment, where nodes can join or

secede from network arbitrarily. Notice also that the closed-

form results of per node throughput capacity derived in this

paper only hold for the simple network scenario with i.i.d.

node distribution, so our another future research direction

is to develop theoretical models for other real environment

with more practical node distributions, like the correlated

distribution, the clustered distribution and the reference point

distribution.
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