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� 
Abstract—Extensive studies have shown that the 

peer-to-peer (P2P) traffic has already become the 
dominant traffic in the current Internet. The current P2P 
streaming user base is still undergoing stunning growth in 
China although its user scale already reached 158 million 
in 2010, 68% of Chinese web users. Hence, a 
comprehensive understanding of the P2P streaming 
network traffic characterization is essential to Internet 
Service Providers (ISPs) in terms of network planning and 
resource allocation. In this paper, based on the massive 
data collected with a passive network monitoring 
equipment placed in the Internet backbone, we provide an 
in-depth view of the current P2P streaming traffic in the 
current Internet of China. In particular, we statistically 
study the P2P streaming traffic in both wired (ADSL in 
this paper) and wireless (CDMA) networks, and 
characterize the traffic from both flow-level and 
packet-level aspects. Our study uncovers the significant 
impact of the P2P streaming traffic on the underlying 
network due to its unique characteristics and the 
bandwidth intensive nature of the corresponding 
applications. In addition, the result reveals the significant 
difference between the characterizations of the P2P 
streaming traffic in wired and wireless network due to 
their respective intrinsic environmental characteristics. 
 

Index Terms—Peer-to-Peer Streaming; Packet; Flow; 
Traffic Characterization 
 

I. INTRODUCTION 
HILE Internet connectivity has reached a 
significant part of the world’s population, the 

usage of peer-to-peer (P2P) applications is growing 
dramatically, particularly for sharing video and audio 
files.  Different from the traditional media streaming 
using the model of client/server (C/S) communications, 
P2P streaming can utilize bandwidth resource of host 
nodes more adequately and provide service to peer nodes 
without changing the current Internet deployment [1]. 
Statistics showed that China already had 158 million 
P2P streaming users in 2010, 68% of its internet users, 
while this number is still growing rapidly. Typical P2P  

 
streaming applications such as PPlive, PPstream, UUSee, 
and QQlive become very popular, and new applications 
are also introduced at a rapid pace. With such a large 
user population, tremendous amount of traffic generated 
by bandwidth intensive P2P streaming applications is 
inevitably impacting the performance of the underlying 
network. It is, therefore, important to understand and 
characterize the traffic in terms of the end-system 
behavior and network impact in order to develop 
workload models and to provide insights into network 
traffic engineering, security, and capacity planning. 

In the past, owing to various reasons such as security 
concerns and technical difficulties of collecting large 
volumes of real-time traffic data from high-speed 
Internet backbone of China, not many works, if any, 
have been conducted to characterizing the P2P streaming, 
and therefore the corresponding traffic model of P2P 
traffic cannot be identified. Toward this goal, we have 
developed hardware based network traffic probe 
equipment, Traffic Monitoring System (TMS), which 
can operate at 10Gbps of throughput, and we have been 
allowed to place such equipment inside the Internet 
backbone of a major ISP of China, from which we have 
collected a huge amount of data to carry out our study.  
More specifically, two sets of the probing equipment 
were placed at different locations of the Internet 
backbone monitoring the P2P streams originated from 
and terminated in the wired (ADSL) and wireless 
(CDMA) access network. The deployment will be 
elaborated in Section III. We have performed a 
systematic characterization of P2P streaming traffic in 
both wired and wireless portions of the network, and 
studied the impact of such traffic on the underlying 
network. Our unique monitored traces provide a broad 
view of wired and wireless network traffic, enabling 
more comprehensive and detailed characterizations than 
was possible in previous works. Detailed statistical 
information, e.g., packet length, packet inter-arrival time, 
correlation between the number of flows and peers, 
correlation between the number of flows and traffic 
volume, concurrent features of the traffic, and the 
number of peers per user, is presented. We believe the 
work is of great interest to service providers, especially 
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those in China, because the P2P streaming traffic has 
increased dramatically during the last couple of years 
and constituted a significant portion of the total traffic 
observed in Internet backbones. The characterization 
will enable service providers to better handle such traffic 
through well selected traffic engineering measures, 
enhance network robustness, and provide better service 
to the customers. 

The rest of the paper is organized as follows. Section 
II discusses related works. The data collection 
infrastructure and collected data are described in Section 
III. Traffic characteristics are investigated in Section IV. 
Finally, concluding remarks are presented in Section V. 

 

II. RELATED WORKS 
Traffic characterization has been extensively studied. 

Mandelbrot [2] introduced the concepts of self-similarity 
and fractional Brownian noise to analyze the 
communication system. Self-similarity refers to the 
property of an object to maintain certain characteristics 
when observed at different scales. These concepts have 
been widely adopted to analyzing and modeling network 
traffic, upon which many traffic models [3]-[7] have 
been proposed. These models well capture the long-term 
dependency nature of the network traffic. 

A number of works on characterizing traffics of 
various network environments have been reported in 
recent years. These prior works considered in detail the 
traffic volume in campus networks [8]-[10], enterprise 
networks [11], [12], core networks [13], and hotspot 
networks [14], [15]. Owing to the availability of 
broadband “last mile” connections, many applications 
such as P2P services have become prevalent, and hence 
there have been recent effort on characterizing traffic of 
such services [16] - [18]. 

It was found that the frequent occurrence of flash 
flows highly affects the performance of existing 
flow-based traffic monitoring systems [19]. Roughan et 
al. [20] introduced a metric for measuring backbone 
traffic variability based on simple but powerful traffic 
theory by using widely available SNMP traffic 
measurements. Owezarski and Larrieu [21] showed the 
highly oscillating nature of Internet traffic, thus 
explaining why it is almost impossible nowadays to 
guarantee a stable QoS in the Internet. Thompson et al. 
[22] revealed the characteristics of the traffic in terms of 
the packet size, flow duration, volume, and percentage 
composition by protocol and application, and patterns 
seen over two time scales. Maier et al. [23] studied a 
broad range of dominant characteristics of residential 
traffic including DSL session characteristics, network 
and transport-level features, prominent applications, and 
network path dynamics. In addition, this research group 

conducted a study on mobile hand-held (MHD) device 
usage from a network perspective [24], and found that 
MHD traffic is dominated by multi-media content and 
downloads of mobile applications. 

There have also been many researches on network 
modeling. Frequency domain techniques, e.g., wavelets 
coding and spectral analysis, have been applied to model 
network traffic [25]. Garcia-Dorado et al. [26] showed 
that while the occurrence of IP addresses and port 
numbers follows a Zipf distribution (as expected), the 
parameters of the distribution vary greatly in a spatial 
dimension (i.e., across individual university networks). 
Measurement traces of aggregated traffic from an ADSL 
access network were evaluated on multiple time scales in 
[27], and an unexpected smooth profile with less 
relevance of long range correlation than experienced for 
traffic from Ethernet LANs was observed. Zhang and 
Vernon [28] investigated a new technique called 
Bayesian-Block-Analysis (BBA) to analyze the time 
varying rate of events, and showed that BBA is highly 
accurate in identifying the rate changes in traces with 
exponential interevent times and known rate changes, 
and reasonably accurate in traces with  heavier-tailed 
interevent times. Olivier and N. Benameur [29] found 
that Gamma and Weibull distributions provide excellent 
fits to the empirical flow inter-arrival time distributions. 

With the wide spread of media streaming, 
characterization of both stored and live media streaming 
received considerable attention in the past several years. 
Sripanidkulchai et al. [30] studied the live media streams 
collected from a large CDN (Content Distribution 
Network) and found that media popularity follows a 
2-mode Zipf distribution.  Chesire et al. [31] in 2000 
observed that most media streams viewed in their 
campus were encoded at low bit rates suitable for 
streaming for dial-up users, e.g., typically less than 1MB 
in size. Wu et al. [1] utilized more than 230GB of traces 
collected from UUSee to characterize the achievable 
bandwidth of streaming flows among peers in a large 
scale real-world P2P live streaming session. Zink et al. 
[32] characterized the nature of YouTube traffic in a 
large university campus network. McCreary and claffy 
[33] presented trends in application usage seen at the 
NASA Ames Internet Exchange for a period of over 10 
months, and showed changes in the fraction of traffic 
from streaming media and online gaming, as well as an 
increase in traffic from new applications such as Napster 
and IPSEC tunneling. Brownlee and claffy [34] pointed 
out that streams can be classified not only by lifetime 
(dragonflies and tortoises) but also by size (mice and 
elephants), and noted that stream size and lifetime are 
independent dimensions. 

As reviewed above, there has been a rich literature on 
modeling and characterizing traffics in different  
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Fig. 1.  Deployment of TMS in (a) the ADSL access network, and (b) the CDMA mobile network. 
 

networks. However, to our best knowledge, none has 
analyzed and characterized the P2P streaming traffic in 
China at such a large scale as will be reported next. The 
increasing P2P streaming traffic load on the Internet   
calls for an in-depth investigation of the traffic nature. 
Currently, the ability to managing P2P streaming 
effectively is becoming a critical networking 
issue, and thus tremendous efforts are focusing 
on making P2P streaming more effective. Therefore, it is 
essential to study the characteristics of the P2P 
streaming traffic in China in a realistic environment in 
order to serve the ever increasing size of the user base 
and facilitate emerging P2P streaming applications. 

 

III. COLLECTION AND CLASSIFICATION OF TRAFFIC 
DATA 

A. Data collection 
As mentioned above, the datasets used in this study 

were collected by using our self-developed Traffic 
Monitoring System (TMS) (This device has been placed 
in the production networks by several ISPs for traffic 
monitoring purpose.). Two sets of mirrored packets have 
been collected from ADSL and CDMA networks from a 
large Chinese ISP. Overall, the ISP has roughly 4.5 
million ADSL users, and more than 3.02 million CDMA 
users including about 0.3 million 3G users. For the 
ADSL data, a monitoring system connecting to the 
16x10G POS export ADSL links between the backbone 
routers and the core routers of a large metropolitan area 
network in Southern China is deployed, as shown in Fig. 
1(a). Similarly, for the CDMA data, a monitoring system 
is deployed between the Packet Data Serving Nodes 
(PDSNs) and the backbone routers in the same city, as 
shown in Fig. 1(b). The access bandwidth of a monitored 
link varies between 1024 and 512Kbps for the 
downstream,  and between 4096 and 512Kbps for the 
upstream, while in the CDMA network, the CDMA 1X 

can actually support 150Kbps and the 3G users can 
support 3100Kbps. 

In order to characterize the P2P streaming traffic 
accurately, it is crucial to identify the P2P streaming 
traffic from the aggregate traffic. For this purpose, we 
first classify and capture the raw packets via TMS based 
Deep Packet Inspection (DPI) probes [35], which are 
proven to be capable of achieving high classification 
accuracy. Furthermore, to ensure that the classification 
result is reliable, we use a self-designed Network Traffic 
Analysis and Classification System (TACS) to further 
identify and classify the mirrored packets which are 
already labeled by TMS. TACS combines automatically 
mining signatures technology [36], attribute selection 
technology [37], and machine learning [38], and adopts 
both DPI [35] and Deep Flow Inspection (DFI) [39] to 
identify and classify the offline traces. A high 
classification accuracy can be achieved by synergizing 
the hardware speed of DPI probes and the intelligent 
software of TACS. In our previous work [40], the traffic 
classification accuracy can be higher than 96.88%. We 
shall next characterize the P2P streaming traffic 
classified by and extracted from TACS. 

Note that in this paper, we group the packets into 
different flows by the 5-tuple {IP source address, IP 
destination address, source port number, destination port 
number, transport protocol}, i.e., a 5-tuple flow is a 
sequence of packets that share the same 5-tuple [26] 
during a certain period (e.g., 64s). 

B. Data Reduction 
Owing to the extremely large volume of collected data 

and limited computational resources, e.g., memory and 
CPU, we have to select a subset of the data for analysis. 
 
Weekly Traffic Pattern 

Our monitoring system has one key advantage—it can 
sniff packets generated from thousands of ADSL lines 
and CDMA users from different urban areas, connected  
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Fig. 2.  Inbound and outbound traffic in a week: (a) ADSL data, and (b) CDMA data. 
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Fig. 3.  Inbound and outbound traffic on September 21, 2011: (a) ADSL data, and (b) CDMA data. 
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Fig. 4.  P2P streaming media traffic collected on Sep 21, 2011: (a) ADSL data, and (b) CDMA data. 
 

to city node routers. Fig. 2 provides an overview of the 
ADSL and CDMA data traces covering the period of a 
week (Sep. 19, 2011 to Sep .26, 2011). Fig. 2(a) and 2(b) 
show the inbound and outbound traffics of ADSL and 
CDMA networks, respectively. Note that the network 

traffic consistently follows a clear daily pattern in both 
networks, and the daily traffic patterns are similar to 
each other. As such, we pick the data collected on 
Wednesday (September 21, 2011) for our analysis. 
 



 

TABLE I 
DESCRIPTION OF MIRRORED PACKETS TRACES 

Mirrored Traces Collection Date Duration Direction Users Flows Traffic Volume 
ADSL trace 1(AT1) 2011-9-21 21:00 60min Bi-dir 256 789,518 27.12GB 
ADSL trace 2(AT2) 2011-9-21  21:00 60min Bi-dir 256 615,916 26.91GB 
ADSL trace 3(AT3) 2011-9-21 21:00 60min Bi-dir 256 698,326 28.34GB 
ADSL trace 4(AT4) 2011-9-21 21:00 60min Bi-dir 256 781,264 28.83GB 
CDMA trace 1(CT1) 2011-9-21 21:00 60min Bi-dir 14,703 893,066 8.51GB 
CDMA trace 2(CT2) 2011-9-21 21:00 60min Bi-dir 13,547 938,002 8.30GB 
CDMA trace 3(CT3) 2011-9-21 21:00 60min Bi-dir 13,540 887,358 8.51GB 
CDMA trace 4(CT4) 2011-9-21 21:00 60min Bi-dir 10,312 659,249 8.16GB 

 

TABLE II 
TRAFFIC VOLUME AND NUMBER OF FLOWS PROPORTION OF ADSL DATA FOR VARIOUS APPLICATIONS 

Application 
Traffic Volume (%) Number of Flows (%) 

AT1 AT2 AT3 AT4 AT1 AT2 AT3 AT4 
P2PDownload 31.38% 34.56% 44.01% 28.48% 32.42% 30.62% 34.45% 35.14% 

P2PStream 24.68% 27.03% 18.81% 27.59% 8.92% 10.28% 8.32% 9.53% 
VideoStream 12.82% 12.31% 13.73% 14.21% 3.47% 4.31% 4.00% 3.11% 

Web 15.89% 11.51% 11.61% 15.66% 20.58% 22.09% 19.54% 21.14% 
IM 0.39% 0.29% 0.55% 0.80% 1.54% 1.41% 1.45% 1.82% 

Other 8.88% 8.54% 6.69% 7.80% 1.91% 2.18% 3.43% 2.02% 
Unknown 5.96% 5.76% 4.60% 5.46% 31.16% 29.11% 28.81% 27.24% 

 

TABLE III 
TRAFFIC VOLUME AND NUMBER OF FLOWS PROPORTION OF CDMA DATA FOR VARIOUS APPLICATIONS 

Application 
Traffic Volume (%) Number of Flows (%) 

CT1 CT2 CT3 CT4 CT1 CT2 CT3 CT4 
P2PDownload 22.27% 15.01% 26.24% 24.71% 4.44% 2.87% 4.08% 4.21% 

P2PStream 9.17% 18.74% 10.49% 14.79% 1.52% 11.06% 6.40% 3.08% 
VideoStream 9.82% 8.94% 10.57% 16.25% 1.59% 1.64% 2.10% 2.56% 

Web 44.06% 44.68% 37.11% 32.89% 62.02% 54.88% 56.92% 57.80% 
IM 2.12% 1.83% 2.55% 1.80% 10.15% 8.17% 9.76% 9.94% 

Other 7.11% 5.37% 7.57% 4.99% 9.08% 10.64% 7.29% 8.84% 
Unknown 5.45% 5.43% 5.47% 4.57% 11.20% 10.74% 13.45% 13.57% 

 

Daily Traffic Pattern and Data Selection 
Fig. 3 provides a detailed view of the inbound and 

outbound aggregate traffic volume of two networks on 
September 21, 2011. The green and blue curves in Fig. 
3(a) show that in one day, the ADSL traffic volume 
naturally reaches its peak between 9:00 PM and 10:00 
PM, and bottoms between 5:00 AM and 6:00 AM. Then, 
it climbs up to the peak around noon probably because of 
the noon break. When people begin to get off work 
around 6:00 PM, it bottoms again. From the curves in 
Fig. 3(b) we can see that the shape of the CDMA traffic 
volume is similar to that of the ADSL traffic volume in 
one day. There are still some differences between them. 
The CDMA traffic volume also climbs to the high peak 
around 10 AM, but there is a valley point around noon 

when many people are taking the lunch break. Hence, we 
can conclude that there is strong correlation between 
traffic pattern and user daily activities. 

Since our purpose is to study the P2P streaming traffic, 
we also segregate the P2P streaming traffic as described 
in Section III(A) and study its traffic pattern. Fig. 4 
shows the P2P streaming media traffic volume on Sep 21, 
2011. Note that like the aggregate traffic, the P2P 
streaming media traffic patterns in both networks are 
similar to each other. 

The purpose of this study is to gain insight into the 
P2P streaming traffic and understand its impact on the 
underlying network so that the network can be optimized. 
Toward this end, we choose to study the traffic data 
collected from 9 p.m. to 10 p.m. as this is the most 
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Fig. 5.  The length distribution of packets in ADSL and CDMA networks. 
 

congested period for the network in a day and also 
presents the biggest impact of the P2P streaming traffic 
considering its traffic volume. Since we have placed 
multiple network traffic monitoring devices inside the 
network, we will have multiple sets of data between 9 
p.m. and 10 p.m. for investigation. In this paper, we 
choose four sets of data from the respective ADSL and 
CDMA networks. 

C. Detailed information of traces 
The detailed information of representative traces 

collected on Sep 21, 2011 for our analysis is shown in 
Table I. In addition, we have collected four packet traces 
in both ADSL access network and CDMA mobile 
network. Each ADSL packets trace was collected from a 
C class network of the same Chinese carrier network. 
These four ADSL packets traces cover 1024 users in 
total. The CDMA packets traces were collected by four 
network monitoring probes deployed in different nodes 
in the same city. The total number of users covered by 
these four CDMA packets traces is over fifty thousand. 
In the rest of the paper, we denote the ADSL traces as 
AT1 to AT4, and CDMA traces as CT1 to CT4. 

Based on the identified results from TMS and TACS, 
we classify the ADSL data and CDMA data into several 
categories. Table II and Table III illustrate the traffic 
distribution of five major traffic contributors 
(applications), which are P2PDownload, P2PStream, 
VideoStream, Web and Instant Message (IM), and the 
‘other’ category which includes other services such as 
FTP, Email, Game, VoIP, Telnet, etc.  In addition, the 
unknown traffic, mainly VPN and encrypted traffic, is 

also occupying a portion, around 5% of the total traffic. 
Further analyzing the unknown traffic, over 80% of TCP 
flows contain less than 7 packets (i.e., they hardly 
represent complete sessions), and nearly 90% of UDP 
flows containing less than 16 packets cannot be 
identified and classified appropriately. 

According to Table II, P2P applications contribute the 
majority of the traffic in the ADSL access network. 
Moreover, the P2P streaming traffic volume makes up 
around 25%. In CDMA mobile network, as shown in 
Table III, web and IM are the major players, mainly 
because the majority of users use handsets accessing the 
CDMA network to browse the website and chat with 
friends. P2P applications also account for a certain 
percentage of the traffic volume for users accessing the 
network via 3G network cards in their PCs. 

Since P2P streaming applications exhibit similar 
characteristics among themselves (i.e., traffic generated 
by one P2P streaming application is similar to that by 
another), we focus on characterizing the aggregate P2P 
streaming traffic in the following context. Since the 
traces, collected from both the ADSL access network 
and CDMA mobile network, are rather recent and 
voluminous, the conclusions drawn from our analysis of 
these recently acquired data can reliably reveal the 
traffic characteristics of the current network. 

 

IV. DETAILED TRAFFIC ANALYSIS 
In this section, we will characterize the P2P streaming 

traffic in terms of packet length distribution, packet 
inter-arrival time, correlation coefficient distribution,  



 

 
TABLE IV 

PROPORTION OF TOP FIVE PACKET LENGTHS 

TCP UDP 
ADSL CDMA ADSL CDMA 

Packet length 
(B) 

Proportion 
(%) 

Packet length 
(B) 

Proportion 
(%) 

Packet length 
(B) 

Proportion 
(%) 

Packet 
length (B) 

Proportion 
(%) 

40 22.84% 1448 45.85% 53 35.01% 1089 23.86% 
1480 12.54% 40 16.19% 1089 23.89% 53 22.14% 
52 11.97% 52 7.38% 1104 7.46% 1104 12.92% 

1492 10.66% 576 5.83% 41 2.41% 1080 9.08% 
1454 6.75% 253 4.53% 151 2.37% 1103 5.99% 
other 35.24% other 20.22% other 28.86% other 26.01% 

 

TABLE V 
PROPORTIONS OF TCP PACKETS AND UDP PACKETS 

Protocol 
Proportion (%) Proportion (%) 

AT1 AT2 AT3 AT4 CT1 CT2 CT3 CT4 
TCP 0.18% 0.05% 0.32% 0.31% 0.36% 0.57% 0.24% 0.09% 
UDP 99.82% 99.95% 99.68% 99.69% 99.64% 99.43% 99.76% 99.91% 

 

average concurrent connections, and peer analysis. 

A. Distribution of packet length 
The packet length of an IP packet is defined as the 

length of the sum of bytes of the IP header, the TCP or 
UDP header, and the payload of the packet. The 
distribution of packet length is shown in Fig. 5. 

Fig. 5, (a1), (a2), and (a3) present the length 
distribution of ADSL data while (b1), (b2), and (b3) 
present the length distribution of CDMA data. Moreover, 
(a1) and (b1) are the length distribution of all packets, 
(a2) and (b2) are the length distribution of TCP packets, 
and (a3) and (b3) present the length distribution of UDP 
packets, respectively. 

It can be observed that the majority of TCP packets 
are either less than 100 bytes or larger than 1400 bytes. 
The UDP packet length distribution is quite similar to 
that of TCP packets, i.e., multi-modal, implying that 
only certain packet lengths are adopted by P2P 
streaming services for data transmission and 
communications. Table IV lists the top five (percentile 
wise) of the packet length observed from the collected 
data. So, we may conclude that P2P streaming 
applications use specified packet lengths for data 
transmission. This feature is very valuable in identifying 
and classifying P2P streaming traffic. 

Most importantly, Fig. 5 shows that the length 
distribution of all packets and the length distribution of 
UDP packets are almost the same. This phenomenon is 
owing to the fact that P2P streaming applications only 
use UDP protocol for real-time data transmission. In 
some P2P streaming applications, clients use TCP to 

login and download advertising and program lists, and 
thus this traffic is also classified as P2P streaming media 
traffic by TMS. The proportions of TCP packets and 
UDP packets are shown in Table V. Apparently, most 
traffic, constituted by the payload, is carried by UDP. 

B. Distribution of packet inter-arrival time 
In this section, we focus on the distribution of packet 

inter-arrival time of individual flows, in which the 
packet inter-arrival time is defined as the difference 
between the arrival time of the current packet and that of 
the previous packet. 

A five-tuple flow [26] is defined as a sequence of 
packets that share the same 5-tuple during a certain 
period. If the period is defined as 64 seconds, the upper 
bound of the packet inter-arrival time is also 64 seconds. 
Using milliseconds as the unit of packet inter-arrival 
time, the x-axis is ranged from 0 to 64000. The analysis 
of the acquired data indicates that the portion of packets 
whose inter-arrival time greater than one second is very 
small. The probability of having packet inter-arrival time 
less than 300 milliseconds is more than 80%. Hence, we 
only focus on the 0~300 milliseconds range. Fig. 6 
illustrates the distribution of packet inter-arrival time in 
both ADSL access network and CDMA mobile network, 
respectively, in which the x-axis is the inter-arrival time 
in millisecond. The distribution of ADSL TCP packet 
inter-arrival time is shown in Fig. 6(a), that of ADSL 
UDP packet inter-arrival time in Fig. 6(b), that of 
CDMA TCP packet inter-arrival time in Fig. 6(c), and 
that of CDMA UDP packet inter-arrival time in Fig. 
6(d). 
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Fig. 6.  Distribution of the proportion of packet inter-arrival time. 
 

The average packet inter-arrival times of TCP and 
UDP packets in ADSL traces are 374.24 and 318.06, 
respectively, while those in CDMA traces are 796.62 
and 677.66, respectively, which are twice those of the 
packet inter-arrival times in ADSL traces. Furthermore, 
the standard deviations of the packet inter-arrival times 
of TCP packets and UDP packets in ADSL trace are 
2274.36 and 1867.77, respectively, and those in CDMA 
traces are 2669.01 and 3278.41, respectively. These 
figures show that the fluctuation of the inter-arrival time 
of packets in the ADSL traces is smaller than that in the 
CDMA traces. The inter-arrival time of UDP packets in 
the ADSL traces fluctuates less than that of TCP packets, 
while the phenomenon is just the opposite in the CDMA 
traces. 

Fig. 6 also shows that the distribution of the CDMA 
packet inter-arrival time is more dispersive than that of 
the ADSL packet inter-arrival time in the sense that the 
probability distribution of ADSL packet inter-arrival 
time exhibits several distinct peaks before 50 
milliseconds, and they occupy a large portion. For TCP 
packet inter-arrival time, there is a peak at 24 
milliseconds which is the median value of the TCP 
packet inter-arrival time, while the curve of UDP packet 
inter-arrival time reaches its peak at 18 milliseconds, 

which is the median value. These characteristics imply 
that on average a P2P streaming service through CDMA 
has only one half of the bandwidth of that through 
ADSL. 

C. Correlations analysis 
In general, an elephant flow refers to a large flow 

while a mice flow a small flow; yet, there is no concrete 
agreement on the size of a flow to be considered a large 
flow, and vice versa [41]. In this paper, we define an 
elephant flow as the flow which contains more than 64 
packets, and otherwise it is a mice flow. Extensive 
studies have shown that an elephant flow contributes 
more traffic than a mice flow does [42]. 

As described in Section III, we have collected four 
packet traces in both ADSL access network and CDMA 
mobile network, each of which covered one hour. Hence, 
we define N intervals, each of which covers 3600/N 
seconds. The number of flows, peers, elephant flows, 
and mice flows of P2P streaming service and traffic 
volume are calculated for each interval. In this paper, we 
set N as 10, and therefore we have 360 sets of statistics. 
For ADSL data, since we have four traces, we define a 
vector , i=1, 2, 3, and 4, in each interval as the 
number of P2P streaming flows in the trace. We also  
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Fig. 7.  The distribution of the correlation coefficient between the number of P2P streaming flows and the number of peers of (a) ADSL data, and 
(b) CDMA data, respectively. 
 

                            

                                                           (a)                                                                                                                        (b) 
Fig. 8.  Distribution of correlation between the number of flows and traffic volume of (a) ADSL data, and (b) CDMA data, respectively. 
 

define the number of P2P streaming service peers as 
vector , i=1, 2, 3, and 4, in each interval in the trace. 
Hence, there are 360 sets of X and Y vectors in total. 

The correlation coefficient between the number of 
flows and the number of peers is calculated as: 

 

where  is the mean of X and  is the mean of Y. The 
correlation coefficients for all X and Y in each interval 
are shown in Fig. 7(a). Similarly, the cumulative 
probability of the correlation coefficient of CDMA data 
is illustrated in Fig. 7(b). 

It can be seen from Fig. 7 that the number of flows is 
highly correlated to the number of peers; this is intuitive 
as the destination IP address is part of the five-tuple, and 
thus the more peers, the more number of flows. For P2P 
applications, it is very likely that more than one 
connection is set up between two peers. Hence, it is 

interesting to find out the distribution of the number of 
flows between an IP pair, which will be presented later 
in this paper. 

In order to study the relationship between the number 
of flows and traffic volume, we calculate the correlation 
coefficient using three different definitions of X and Y, 
and also draw three cumulative probability distributions 
in the same figure. Below are the three definitions: 

A) X is defined as the number of P2P streaming 
flows in each interval. 

B) X is defined as the number of P2P streaming 
elephant flows in each interval. 

C) X is defined as the number of P2P streaming 
mice flows in each interval. 

Meanwhile, Y is defined as the traffic volume of P2P 
streaming service in each interval. Hence, we can 
calculate the correlation coefficient between X and Y. 
Fig. 8 illustrates the three cumulative probability curves. 

From Fig. 8, it can be seen that the numbers of 
elephant flows are much more correlated to the traffic  



 

TABLE VI 
PROPORTION OF ELEPHANT AND MICE FLOWS IN P2P STREAMING MEDIA 

 
Flow (%) 

AT1 AT2 AT3 AT4 CT1 CT2 CT3 CT4 
Elephant flows 10.08% 12.14% 11.38% 13.43% 19.20% 4.87% 4.94% 18.28% 

Mice flows 89.92% 87.86% 88.62% 86.57% 80.80% 95.13% 95.06% 81.72% 

 
TABLE VII 

STATISTIC OF CONNECTIONS AND PEERS 

Statistics Formula 
Average Concurrent Connections Connections/number of users 
Average Concurrent Connections of Elephant Flows Connections of elephant flows/number of users 
Average Concurrent Connections of Mice Flows Connections of mice flows/number of users 
Average Peers Number of peers/number of users 

 

 
Fig. 9.  Distribution of average number of concurrent connections of 
ADSL mice flows 
 

 
Fig. 10.  Distribution of average number of concurrent connections of 
ADSL elephant flows 
 

volumes than those of mice flows do (curve B is under 
curve C). This suggests that elephant flows contribute 
the majority of the traffic volume. In contrast, the 
numbers of mice flows show almost no correlation with 
the traffic volumes in the ADSL network because the 
corresponding CDF curve (C) is nearly linear over the 

range of -1 to 1, suggesting mice flows are mainly 
control flows whose numbers in average are not 
correlated to the traffic volumes. However, the numbers 
of mice flows do show positive correlation with the 
traffic volumes in the CDMA network because the 
corresponding CDF curve (C) mainly covers the range of 
0 to 1.  This is mainly owing to the fact that the CDMA 
network environment is relatively unstable, and 
therefore it is conceivable that the portion of mice flows 
in the CDMA network is much larger than that in the 
ADSL network. Mice flows in the CDMA network also 
contribute a significant portion of traffic volume even 
though the number of packets in each mice flow is small.  
The proportion of elephant flows and mice flows in both 
ADSL access network and CDMA mobile network is 
illustrated in Table VI. 

D. Concurrent feature analysis 
Each P2P streaming media client keeps an online peer 

list for the selected channel, and then tries to connect to 
the peers on the list [43]. Hence, one peer may connect 
many other peers at the same time, and then try to find 
active peers to transfer media data. In this section, we 
analyze this concurrent feature of P2P streaming media 
service. Taking 10 seconds as an interval, we count the 
number of users, concurrent connections, concurrent 
connections of elephant flows and mice flows, and 
numbers of peers of all the users in every interval. By 
doing so, we are able to calculate the average concurrent 
connections, average concurrent connections of elephant 
flows and mice flows, and average number of peers to 
which a user is connected, as illustrated in Table VII. 

To avoid the impact of the outliers of the collected 
data on the analysis, we focus on analyzing the data in 
the middle half of the hour from 21:15 to 21:45. Fig. 9 
shows that the average number of mice flows in the 
ADSL network in ten seconds is between 2 and 4, while 
the average number of elephant flows, as shown in  



 

 
Fig. 11.  Distribution of average number of peers per user in ADSL 
 

 
Fig. 12.  Distribution of average number of concurrent connections of 
CDMA mice flows 
 

Fig. 10, is around 10, except ADSL Trace 3 (AT3), 
which is around 8. From these two figures, we readily 
see that there are more elephant flows than mice flows 
for each user in each interval. It is, however, contrary to 
the overall distribution of the elephant and mice flows 
for the entire ADSL traces, shown in Table VI. This 
contrast suggests that an elephant flow exists across 
many more intervals than a mice flow does. 

Therefore, although the total number of the elephant 
flows is much less than the total number of the mice 
flows, the numbers of existing connections of the two 
types of flows in the short intervals may exhibit an 
inverse phenomenon. 

Fig. 11 shows the average number of peers per user 
during the half-hour period. Note the similarity between 
Fig. 11 and Fig. 9. This implies that the number of mice 
flows generated by a user is closely related to the number 
of peers the user holds.  The average number of peers per 
user for most ADSL traces (except AT3 which is 
approximately 10) is approximately 13. 

Fig. 12 to Fig. 14 present the analysis of the CDMA 
data. Unlike the ADSL data, differences among the four  

 
Fig. 13.  Distribution of average number of concurrent connections of 
CDMA elephant flows 
 

 
Fig. 14.  Distribution of the average number of peers in CDMA. 
 

traces are more pronounced. The numbers of mice flows 
among the four traces shown in Fig. 9 do not deviate 
much as compared to those in Fig. 12. The average 
number of concurrent elephant flows in Fig. 10 are 
higher than 8, while the average number of concurrent 
elephant flows are lower than 6 in Fig. 13.  In comparing 
Fig. 12 and Fig. 13, one finds that the numbers of 
elephant flows are no longer much larger than those of 
mice flows as in the situation in ADSL.  In some traces, 
the numbers of elephant flows are even lower than those 
of mice flows. This is probably attributed to the 
error-prone wireless channel of the CDMA mobile 
network that results in a large number of retransmissions 
or probe flows. 

As shown in Fig. 14, the average number of peers per 
user differs largely among the different traces, ranging 
from 5 in CT1 to 15 in CT2. 

From the concurrent feature analysis, as compared to 
the ADSL access, the CDMA network is much more 
dynamic in terms of the average number of concurrent 
connections and average number of peers per user. In 
addition, more mice flows exist in the CDMA network,  



 

 
(a1)                                                             (a2)                                                                             (a3) 

 
(b1)                                                             (b2)                                                                             (b3) 

Fig. 15.  Distribution of the number of flows (all flows, elephant flows, mice flows) between two peers. 
 

which might be caused by the instability of the mobile 
channels. 

E. Peer analysis 
In this section, we analyze the number of flows 

between a pair of peers. We know from Section IV(C) 
that the number of flows is highly related to the number 
of peers. However, this does not mean that the number of 
flows equals the number of peers, and there may be more 
than one flow between two peers. Hence, we analyze the 
distribution of the number of flows between every pair 
of peers. 

First, we extract P2P streaming flows from all traces, 
and then group them by the source IP address and 
destination IP address; the number of flows in each 
group is the number of flows between two peers. 
Moreover, we categorize the flows between two peers 
into elephant flows and mice flows. Fig. 15(a1), 15(a2), 
and 15(a3) respectively show the distribution of the 
number of flows, the distribution of the number of 
elephant flows, and the distribution of the number of 
mice flows between all possible pairs of peers in ADSL 
traces. Similarly, Fig. 15(b1), 15(b2), and 15(b3) 
respectively illustrate the distributions of the number of 
flows, the number of elephant flows, and the number of 
mice flows between all possible pairs of peers in CDMA 
traces . 

It can be seen from Fig. 15(a1) and 15(b1) that over  
50% pairs of peers have only one flow. The proportion 

of pairs of peers which have less than 15 flows is great 
than 95%. For IP pairs with elephant flows, more than  
80% pairs from ADSL traces have only one elephant 
flow, while it is about 90% in CDMA data. Fig. 15(a3) 
and 15(b3) show the number of mice flows between two 
peers, and over 95% pairs of peers create less than 15 
mice flows. 

The distribution of the number of peers from the 
perspective of the user is also analyzed.  First of all, we 
extract and identify the elephant flows from the traces. 
According to each user, we enlist the elephant flows into 
different groups. Hence, each user has a group of 
elephant flows. Finally, we calculate the number of 
distinct destination IP addresses as the number of peers 
in each group. Hence, the distribution of the number of 
peers per user is obtained. Fig. 16(a) shows the 
cumulative distribution of the number of peers per user 
in the ADSL access network, and Fig. 16(b) that in the 
CDMA mobile network. Note that a peer is one with the 
destination host with which the elephant flow has 
established. Moreover, the CDF (cumulative distribution 
function) of the number of peers per user of ADSL data 
follows a Wakeby distribution, while the CDF of the 
number of peers per user of CDMA data follows a 
Johnson SB distribution. 

The Wakeby distribution is defined by the quantile 
function: 

 



 

 
(a)                                                                                                            (b) 

Fig. 16.  CDF of the number of peers per user of (a) ADSL data follows the Wakeby distribution function, and that of (b) CDMA data follows the 
Johnson SB distribution function. 
 

 
(a)                                                                                                (b) 

Fig. 17.  Curve fitting: (a) P-P plot of fitting curve of the Wakeby distribution, and (b) Q-Q plot of fitting curve of the Johnson SB distribution 
 

where , and X, which is a random 
variable, stands for the number of peers per user in this 
application. After fitting, the parameters are: 

. 
The probability density function of Johnson SB 

distribution is defined as: 

 

where  . The fitting parameters are: 
. 

Fig. 17 shows the P-P plot of the fitting curve of the 
Wakeby distribution and the Q-Q plot of the fitting curve 
of the Johnson SB distribution. In statistics, a P-P plot 
(probability-probability plot or percent-percent plot) is a 
probability plot for assessing how closely two data sets 
agree by plotting the two cumulative distribution 

functions against each other, while a Q-Q plot ("Q" 
stands for quantile) is a probability plot, which is a 
graphical method for comparing two probability 
distributions by plotting their quantiles against each 
other (from www.wikipedia.org). From Fig. 17, we can 
obtain that the CDF of the number of peers per user of 
ADSL data fits well by the Wakeby distribution function, 
and that of CDMA data fits well by the Johnson SB 
distribution function. 

Hence, the Wakeby distribution and Johnson SB 
distribution can be useful in estimating a peer-to-peer 
streaming user’s number of peers of elephant flows. 
However, we can hardly find a distribution function to 
approach the CDF of the number of peers of mice flows 
per user. 

 



 

V. CONCLUSIONS 
This paper presents insights of peer-to-peer streaming 

traffic collected from ADSL and CDMA networks in 
China. From our analysis, we have found that over 99% 
P2P streaming traffic volume is contributed by the UDP 
protocol. As P2P streaming applications almost always 
send packets with fixed length, the majority of TCP 
packets are either less than 100 bytes or larger than 1400 
bytes, while the majority of UDP packets are either less 
than 100 bytes or around 1100 bytes. The distributions of 
ADSL packet inter-arrival time have peaks at around 18 
milliseconds and 24 milliseconds. The number of flows 
is highly related to the number of peers, and the number 
of elephant flows is proportional to the total traffic 
volume. For ADSL traces, the average concurrent 
connections of elephant flows are relatively higher than 
those of the mice flows, while no clear distinction 
between the elephant and mice flows is observed in 
terms of the average number of concurrent connections 
from CDMA traces. Over 50% pairs of peers have only 
one flow and over 95% pairs of peers have less than 15 
flows. At last, we prove that the CDF of the number of 
peers per user of ADSL elephant flows data follows a 
Wakeby distribution, while the CDF of number of peers 
per user of CDMA elephant flows data follows a 
Johnson SB distribution. This is useful to estimate a P2P 
streaming user’s numbers of peers with elephant flows 
for content delivery. However, we have not found a 
suitable distribution to fit the number of peers of mice 
flows. 
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