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Abstract—Demand Side Management in smart grid has
emerged as a hot topic for optimizing energy consumption.
In conventional research works, the energy consumption is
optimized from the perspective of either the users or the power
company. In this paper, we investigate how energy consumption
may be optimized by taking into consideration the interaction
between both the parties. We propose a new energy price model
as a function of total energy consumption. Also, we propose a new
objective function, which optimizes the difference between the
value and cost of energy. The power supplier pulls consumers in a
round-robin fashion, and provides them with energy price param-
eter and current consumption summary vector. Each user then
optimizes his own schedule and reports it to the supplier, which in
turn updates its energy price parameter before pulling the next
consumers. This interaction between the power company and
its consumers is modeled through a two-step centralized game,
objective of which is to reduce the peak-to-average power ratio by
simultaneously optimizing users energy schedules and lowering
the overall energy consumption in the system. The performance of
the proposed game theoretic demand-side management approach
is evaluated through computer-based simulations.

Index Term - Smart grid, game theory, real-time pricing,
energy optimization.

I. INTRODUCTION

Recently, smart grid has emerged as a hot research topic and
attracted government, industry, and academia alike [1], [2], [3],
[4]. For the successful deployment of smart grid, demand-side
management or demand response [5] is crucial. Demand-side
management refers to the planning and implementation of the
electric utility activities, designed to influence the customers’
consumption of electricity in such a fashion that produces
desired changes in the shape of loads of the utility company.
While demand-side management aims at producing a change
in the load-shape, it needs to balance the requirement of the
utility provider (i.e., the power company) and that of the
customers.

Traditionally, the demand-side management technique may
either shift or reduce the energy consumption. Shifting the
energy consumption can effectively mitigate the aggregate
energy load during the peak hours (which is the main reason
for power outage and load shedding events). In this vein, the
ratio of the highest peak time of energy consumption to the
average consumption in a whole day, referred to as the Peak-
To-Average Ratio (PAR), is used to measure the imbalance in
load-shape of daily energy consumption [12]. By shifting en-
ergy consumption from the peak hours to off-peak hours, it is
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possible to reduce the PAR. Another demand-side management
technique is to reduce the energy consumption by encouraging
energy-aware consumption patterns and constructing more
energy efficient housing [9]. Instead of entirely modifying the
existing power infrastructure of the buildings (which may be
difficult and/or time-consuming), our work considers shifting
the energy use and reducing PAR for optimizing the energy
consumption.

In addition, recent research studies and initiatives indi-
cated that dynamic pricing is an efficient way to implement
demand-side management in smart grid. As its name implies,
in dynamic pricing, the cost of energy varies dynamically
over time. The energy price may change depending on the
wholesale market (to reflect the fluctuation of energy price)
or the energy consumption level. By considering an adequate
dynamic pricing plan as per the desired objective, smart grid
customers may be provided with incentives for participating in
such collaborative scheduling in return of monetary incentive.
For example, they may receive a reduction of electricity bills or
an amount of money for their contributed curtailment of power
usage while the utility company is significantly benefited from
the apparently small contribution from individual users. In the
survey conducted in [6], approximately ninety percent of the
customers in a smart grid initiative demonstrated money saving
as the prime reason for their participation. Therefore, our work
also considers monetary incentive as the principal motivation
for the smart grid users.

Scheduling energy consumption for all home appliances
requires considering numerous parameters and constraints.
Therefore, optimizing energy consumption for several users,
at the same time, is difficult in terms of computation, run-
ning time, and even convergence guarantee of the optimiza-
tion algorithm. While a fully centralized optimization is not
feasible for scheduling energy consumption in smart grid,
an entirely distributed approach may also not be attractive
due to practical issues. Because, unlike a communication
network, a power grid should satisfy some specific features.
Since direct connections among the users are not desired
as redundant communication is unnecessary and might invite
security problems, the smart grid users should only be able to
communicate with the control center of the utility company.
In our paper, we consider a practical smart grid architecture,
whereby a two-step game [7]-based approach for a centralized
optimized energy consumption schedule is proposed. The
proposed game aims at reducing the system PAR by optimizing
energy schedules of the users and also lowering the total
energy consumption at the same time. In our proposal, we
consider different objectives and conduct an extensive analysis
on users’ preferences about their perceived value of energy.
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In addition, the interactions between the power supplier and
consumers are also considered.

The remainder of this paper is structured as follows. Sec-
tion II surveys relevant research work on solving the energy
optimization problem in smart grid involving real time pric-
ing. Section III presents our considered smart grid energy
consumption model. Our optimal game-theoretic centralized
algorithm is proposed in Section V. The performance of
the proposed algorithm is evaluated in Section VI. Finally,
Section VII concludes the paper.

II. RELATED WORK

The analysis in [6] presents case studies of dynamic pricing
programs offered by electric utilities in a pilot smart grid
project conducted in the United States until 2010. Smart
meters were distributed to the participants of the project, and
their energy consumption patterns had been studied under
various dynamic pricing schemes including time of use, real-
time pricing, critical peak pricing, and critical peak rebates.
All smart grid customers in the project had to manually
set up their schedules as per the energy price. The utility
company announced new prices based on the prediction of
market fluctuation and system peak load. Although the project
achieved good improvement in terms of PAR reduction, it did
not take into consideration how reaction from the user side
could, in turn, affect (i.e., improve) these prices.

In addition, the survey and analysis in [6] also demonstrated
that the biggest motivation of the participants was monetary
incentive. This indicates that the attitude of the users toward
the energy price is, indeed, important. Furthermore, it was
suggested that the energy pricing performance could be signif-
icantly improved with the aid of automations, e.g., by having
users equipped with smart thermostat to automatically reduce
consumption of air conditioning and central heating during
peak hours.

In the work in [8], an optimal and automatic residential
energy consumption schedule framework was introduced. The
framework is capable of forecasting the fluctuated energy
price. The work is based on the idea that even though real-
time pricing has several potential advantages, its benefits are
currently limited due to lack of efficient automation systems in
the building as well as users’ difficulty in manually responding
to time-varying prices. Thus, this work implied the potential
of exploiting smart pricing in smart grid.

The work conducted in [9] introduced the use of utility
function in an energy schedule optimization, where the energy
generation capacity (during different hours) is limited. By
applying the utility function, the power supplier is able to
obtain the preference of users toward energy consumption
and impose an appropriate price to limit the power usage.
Also, a different energy pricing scheme for different users
was introduced in [9]. However, this resulted in psychological
unfairness amongst the customers. In order to overcome this
issue, the work in [10] added load uncertainty to the pricing
scheme.

In [11], Mohsensian-Rad et al. considered an energy con-
sumption schedule game, which aims at reducing PAR by

shifting energy use. Their approach comprises a totally dis-
tributed algorithm, as every user connects with one another
and reviews the schedules. The game runs continuously so
that if a user has a sudden change in his schedule, then the
whole process recurred to find the equilibrium again. However,
the connection between the users is not desired in smart grid
and the schedule should be made for an interval of time ahead,
e.g., for a whole day, for which a centralized control is more
suitable.

In literature, centralized optimization for scheduling energy
consumption exists in [12]. The scheme in [12] relies on a
social welfare function in terms of the users preference toward
energy consumption, which is the difference of the utility and
cost of the energy. However, analysis on this approach is basic,
particularly since it involves two quantities of different units
(i.e., utility of energy and cost of energy). This work was not
extended to analyze how to select appropriate utility functions
and take into account monetary incentive. In contrast, a
different approach was introduced in [13] that does not focus
on the system improvement such as load balancing or energy
consumption scheduling in smart grid. Instead, that work
attempted at capturing the game (i.e., interactions) amongst
different agents of smart grid, namely consumers, retailers,
and the energy market. In the next section, we present an
existing system model of smart grid for power, energy cost,
and load control modeling [11].

III. EXISTING SYSTEM MODEL

We employ the smart grid infrastructure as the basis for our
system model as shown in Fig. 1. For further details of the
smart grid infrastructure, interested readers are referred to [14],
[15]. In our model, we consider a scheme with one energy
supplier (i.e., the power company) and multiple consumers
(i.e., users). The consumers are equipped with smart meters,
each of which is assumed to have the capability of scheduling
the energy consumption of the respective consumer-residence.
The smart grid users are connected to the power company’s
control centers. The bi-directional communication between the
center and its consumers is possible through the smart meters.
We assume that the smart meters are able to monitor and
collect all the data of electrical appliances plugged into the
grid. The smart meters also have the ability to turn on/off and
choose the level of energy consumption for these appliances
if necessary. In addition, the smart meters are capable of
informing the power company or the supplier about users’
energy consumption schedules.

The existing smart grid model comprises three aspects,
namely power system modeling, appropriate energy cost func-
tion modeling, and load control on consumer-end modeling.
These are described below.

1) Power system modeling: The work in [11] constructs
the following power system model. The model assumes a set
of consumers in the considered smart grid obtaining electric
power from the power company (e.g., as shown in Fig. 1) as
N . Assume that the number of consumers is N , |N |. For
every user, n ∈ N , let lhn indicate the total load during hour
h ∈ H , {1, ..,H} where H = 24. Then, let the daily load
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Fig. 1. Considered system architecture of the smart grid.

for the nth user be denoted by the energy consumption vector,
ln , {l1n, ..., lHn }. Lh, which represents the overall load (for
all the users) during every hour of a day (i.e., h ∈ H), may
be computed as follows.

Lh ,
∑
n∈N

lhn (1)

The daily peak and average load levels are calculated as

Lpeak = max
h∈H

Lh, (2)

and

Lavg =
1

H

∑
h∈H

Lh, (3)

respectively. Therefore, the Peak to Average Ratio (PAR) in
the load demand is given by:

PAR =
Lpeak
Lavg

=
Hmaxh∈H Lh∑

h∈H Lh
. (4)

2) Modeling an appropriate energy cost function: The
hourly energy price varies with real time, proportional to the
system energy consumption during that hour. In this way, the
consumers will have incentives to refrain from using electricity
at peak hours, resulting in a lower PAR. The cost function is an
increasing function, i.e., the energy cost increases along with
the total energy consumption, Lh. For every h ∈ H, we have
Ch(L

1
h) < Ch(L

2
h), ∀L1

h < L2
h. This assumption is made

for the higher energy consumption to have more impact on the
increase on the energy price. Also, the energy cost functions
are assumed to be strictly convex. In other words, for every
h ∈ H, Ch(θL1

h + (1− θ)L2
h) < θCh(L

1
h) + (1− θ)Ch(L2

h).
Here, L1

h, L2
h, and θ are real numbers such that L1

h, L
2
h ≥ 0

and 0 < θ < 1.

3) Modeling load control on consumer-end: Let An in-
dicate the set of residential electrical equipment (e.g., air
conditioner, heater, kitchen appliances, television, fridge, and
so forth) for the consumer n ∈ N . For every appliance for
the nth user, an energy consumption scheduling vector is
constructed as follows.

xn,a = [x1n,a, ..., x
H
n,a], (5)

where the component xhn,a denotes the corresponding one-hour
energy consumption, which is scheduled for the appliance a by
consumer n during hour h. Let lhn, Lh, and L−n,h denote the
total energy consumed by the nth consumer, all consumers,
and all users except the nth consumer. These can be computed
as follows.

lhn =
∑
a∈An

xhn,a, h ∈ H. (6)

Lh =
∑
n∈N

lhn, h ∈ H. (7)

L−n,h = Lh − lhn, h ∈ H. (8)

Then, at each consumer-residence, the task of the smart
meter is to determine the optimal schedule of energy con-
sumption vector, xn,a, for all the appliances belonging to that
consumer. The schedule for any appliance has several con-
straints, such as power consumption, minimum and maximum
energy requirement to finish operation, starting time of the
schedule, and stopping time of the schedule. The feasible set
for energy consumption scheduling vector is defined to satisfy
these conditions.

For each user n ∈ N and each appliance a ∈ An, we
denote the minimum daily energy consumption as Eminn,a and
the maximum daily energy consumption as Emaxn,a . In order to
shift and reduce energy consumption at the same time, there
should be some bound on the energy consumption vector for
all the appliances of the residence. The users also need to
select the time interval, Hn,a, during which the appliances
can be scheduled. Let the beginning and end time instants
of this scheduling interval be denoted by αn,a ∈ H and
βn,a ∈ H, respectively (i.e., αn,a < βn,a). The scheduling
interval must be equal to or longer than the normal time
required for completing the operation for each appliance.
For an appliance with schedulable operation, the scheduling
interval will be more than the normal requirement time. On the
other hand, for an appliance with non-schedulable operation,
its scheduling interval is either a whole day with constant
energy consumption (e.g., refrigerator) or equal to the normal
requirement time in order to avoid further change to the plan.

The power level of each appliance, a ∈ An, also needs to
be constrained by the minimum standby power level γminn,a ,
and the maximum power level γmaxn,a . Then, it is clear that:

γminn,a ≤xhn,a ≤ γmaxn,a , ∀h ∈ Hn,a. (9)

xhn,a = 0, ∀h ∈ H\Hn,a. (10)

Finally, the feasible energy consumption scheduling set
corresponding to user n is defined as follows.
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χn = {xn|Eminn,a ≤
βn,a∑
αn,a

xhn,a ≤ Emaxn,a ,

γminn,a ≤xhn,a ≤ γmaxn,a , ∀h ∈ Hn,a,
xhn,a = 0, ∀h ∈ H\Hn,a}.

(11)

In the following section, to improve the assumptions of the
existing model, we propose a number of modifications to it,
and also formulate an optimization problem.

IV. CONSIDERED MODIFICATIONS AND OPTIMIZATION
PROBLEM FORMULATION

In contrast with piece-wise and quadratic linear functions
described in [11], [12], the difference in energy price between
peak hours and off-peak hours is significantly large. For
instance, PAR value of “three” indicates that the load during
peak-hours is three times the average load of the entire day.
Then, the difference between the price of energy would be
nine times. Due to tight schedules (especially during peak-
hours), this large difference would pose inconvenience to the
customers.

Therefore, a proportional increase in the energy cost in
accordance with the total load is crucial to encourage users’
participation in balancing the PAR. In [6], the energy prices
were chosen carefully by taking into consideration the users’
reaction, and not allowing the differences between energy
prices to exceed three times.

It is worth stressing that in the first glance, we may
intuitively consider that the more drastically the function
changes, the better PAR reduction we might get. After all,
the energy cost of the consumer is related with the imbalance
of energy consumption distribution. However, the computation
time increases significantly as the energy cost function varies
drastically. Therefore, there is a trade-off for the selection of
energy price. In our work, we propose the following energy
price function.

Ch(Lh) = αLh log(Lh + 1), (12)

where α is referred to as the “price parameter”. The supplier
can manipulate this parameter to change the energy price of the
whole day to control the energy consumption (which will be
described further in Section V). The price difference between
the peak and off-peak hours still remains unchanged. More

details about this parameter are discussed in the end of this
section. The logarithmic function in eq. (12) gives a near linear
shape as demonstrated in Fig. 2. Fig. 2 also illustrates the
comparison between the proposed energy price function and
the conventional quadratic price function. Further comparison
of these two price functions is delineated in Section V.

In eq. (11), the energy consumption schedule of all users is
not optimized at once. Instead, each smart meter will optimize
the schedule of its user according to that user’s need. Clearly,
the energy consumption schedule vector must belong to the
feasible set defined in eq. (11). The objective is to optimize the
users’ pay-off. More precisely, it aims to maximize the users’
benefit in consuming energy. The unit of objective function is
in terms of monetary units (e.g., in US dollars) because we
consider that the users are interested in monetary incentive
or reward. The objective function is a function of energy
consumption schedule vector to represent the users’ payoffs
by consuming that amount of electricity from the supplier.
We propose adopting the following utility function.

W (x1, ..., x24) = V alue of Energy − Cost of Energy
= V (

∑24
h=1 xh)− P (x1, ..., x24), (13)

where (x1, ..., x24) denotes the energy consumption schedul-
ing vector of that user, and (x1 + ... + x24 = X) represents
the total energy consumption of the user. V (x) indicates the
value of that amount of energy, and P (x) refers to the cost of
obtaining the energy from the supplier.

In the remainder of the section, we present an analysis of
these two functions (i.e., V (x) and P (x)) to explain the users’
preferences and utility.

A. Value of energy perceived by users

Let V (X) represent how much energy value is given toward
the users. However, each user in the power system is likely
to have a different energy consumption pattern. Their energy
consumption schedule will change based on their own param-
eters. Even if some users have the same energy consumption,
their attitude toward energy value might still be different due
to their characteristics and habits. Therefore, it is not easy
to capture the response and energy demand of different users
toward the same energy price. However, we can analytically
model the users’ preferences toward energy consumption by
adopting the concept of utility function from microeconomics
[16].

Utility describes the measurement of “usefulness” that an
agent obtains from the available resources. It is the way that
the agent values how much he can make the best use of
the resources. According to utility theory, a legitimate utility
function should satisfy the three following characteristics.
1. A utility function should be upper-bounded:

u(x) ≤M, M > 0. (14)

2. The utility function should be an increasing function. More
money or resource means higher value of utility. This could
be mathematically expressed as follows.

du(x)

dx
> 0. (15)
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3. The utility function should be decreasing marginal or
concave. Consider a user having one hundred dollars. The
benefit of gaining one more dollar will be smaller compared
to the situation when the user has nothing. This is referred
to as the decreasing marginal characteristic. This, again,
can be expressed as:

du2(x)

dx2
< 0. (16)

Functions satisfying the condition in eq. (16) belong to the
concave functions class.

There are several utility functions satisfying these charac-
teristics, e.g., quadratic and exponential functions. According
to the work in [17], the exponential function could give better
model of the user’s preference. Here, we use the exponential
function as its value domain has been normalized between
(0,1) [16]:

u(X) = 1− e−ωX . (17)

A plot of utility functions is illustrated in Fig. 3, where ω
is a parameter representing the users’ tolerance toward energy
consumption curtailment. As evident from the figure, a utility
function with a relatively larger value of ω approaches the
upper-bound in a rather slow manner. The users with large
values of ω are stricter with the energy curtailment, i.e., their
utility values are lower than those of the other users even with
the same amount of energy consumption. Since the value of
ω is a private information of the users, energy optimization
algorithms should not leak out this information.

Then, we define the value function of energy as follows:

V (X) = pXmaxu(X) = pXmax(1− e−ωX). (18)

Here, X =
∑24
h=1 xh is the user’s overall energy consump-

tion and Xmax denotes the maximum amount of energy that
the user can consume. p denotes the average price for a unit of
energy that displays the value (in money) of acquiring that unit
of energy, regardless of other elements such as time of day,
level of energy consumption, the extra cost for peak hours,
extra cost of delivery, and so forth.

The utility function we chose has the maximum value of
one. By scaling it up with the product of average energy price
and the maximum amount of energy consumption that a user
can consume, the maximum value of V (x) is equal to the
value of the maximum energy consumption. It implies that

the user will value his consumption amount not greater than
the average money he needs to pay to satisfy his maximum
demand in monetary units.

B. Cost of energy

The cost of energy for the user based on the energy cost
function in eq. (12) can be rewritten for the nth user as follows.

P (x1, ..., x24) = α

24∑
h=1

xh(xh + L−n,h)log(xh + L−n,h + 1).

(19)

Here, the supplier can manipulate α to change the energy
price of the system to influence energy consumption of the
users. More details on this behavior are provided in the end
of this section.

By substituting eqs. (18) and (19), the objective function of
the nth user can be rewritten as:

W (x1, ..., x24) =pXmax(1− e−ω
∑24

h=1 xh)

− α
24∑
h=1

xh(xh + L−n,h)log(xh + L−n,h + 1).

(20)

By normalizing the utility function into monetary units, the
objective function also adopts monetary units. Thus, it can
be exploited to represent each user’s preference toward an
amount of energy consumption, or more precisely his pay-
off for consuming an amount of energy supplied by the power
company. The user attempts at maximizing his own pay-off
by solving the optimization problem expressed by eq. (20).
Because this function is concave, it can be solved by using
Interior-Point-Method (IPM) [18], [19].

C. Decision of energy pricing scheme from the supplier

It is important to investigate the way the supplier decides
the energy pricing scheme. In the dynamic pricing, the energy
price changes according to various factors. In our proposed
model, the energy price changes according to the total load
during different hours. For our proposed price function, the
energy price is proportional to

(
Lh log(Lh + 1)

)
. This prop-

erty is exhibited by defining the energy price function as(
Ch(Lh) = αLh log(Lh + 1)

)
, where Lh is the total load

at hour h. Then, we have an energy price vector, denoted by
C(L), for the entire day as follows.

C(L) = α ·
(
L1 log(L1 + 1) + ...+ L24 log(L24 + 1)

)
. (21)

Therefore, the supplier can manipulate the parameter α to
influence the whole price vector, and impose, in turn, some
constraints on the users’ energy consumption. The users tend
to curtail their consumption if they consider a substantial
increase in the energy price. The supplier needs to consider this
phenomenon. As a consequence, without any constraint for
choosing an appropriate value of α, it is difficult to illustrate
the effect of the users’ dissatisfaction. Furthermore, it is also
important to consider the real value of the energy cost for
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deciding the dynamic energy price. The supplier needs to
consider the average energy price to obtain a close equivalent
of the dynamic pricing scheme. Next, we discuss the choice
of the parameter α from the supplier’s side.

Let us consider a fixed price scheme as the baseline. The
energy price is fixed for every unit of energy regardless of
the time of day or total energy consumption of the system.
Indeed, this fixed price scheme is adopted by the contem-
porary power grids. In case of Japan, Tokyo Electric Power
Company (TEPCO) [20] charges 17.87 yen for the first 120
KW (kilowatts) and 22.86 yen for the next 180 KW for the
light residential user with 20 amp power line. So, we assume
that the supplier has the average price for the energy that it
sells to its customers. This average price was referred to as
the parameter p earlier in the users’ objective function in eq.
(18). When the supplier uses the dynamic price scheme, we
assume that the total cost they charge for the whole system is
equal to the fixed price scheme with the same load. This can
be represented by the expression below.

p

24∑
h=1

Lh = α

24∑
h=1

LhCh(Lh) (22)

= α

24∑
h=1

L2
hlog(Lh + 1).

Therefore, α can be evaluated as follows.

α =
p
∑24
h=1 Lh∑24

h=1 L
2
hlog(Lh + 1)

. (23)

This is how the supplier may compute the energy price
parameter α, and also the energy price for different hours in
a day. We investigate a little more about this price scheme to
have some insight into the difference between the fixed price
and dynamic price schemes.

If we suppose that the energy consumption of the whole
system is equal for all the hours (i.e., L1 = L2 = ... =
L24 = L

24 ), then this implies that there is no imbalance in the
distribution of the energy consumption in different hours and
PAR is equal to one. Then, the energy price for every hour
will be equal to

(
α L

24 log(
L
24 + 1)

)
. As a result, the value of

α can be computed by using eq. (24).

α =
p
∑24
h=1

L
24∑24

h=1(
L
24 )

2log( L24 + 1)
=

p
L
24 log(

L
24 + 1)

. (24)

Therefore, the energy price for every hour becomes equal
to the average price (p) of the fixed price scheme. Therefore,
the imbalance in the load distribution between the hours is
the reason for the differences in the energy prices. As the
load distribution becomes more imbalanced, the gap of the
energy prices increases more. The users would have to pay
additional money for consuming energy during the peak-hours.
So, the best approach for the users is to curtail their energy
consumption according to their objective functions which will
also result in lower energy consumption for the whole system.

In the next section, we propose a game played by the
consumers with the power company so that they may curtail
their energy consumption in an optimized fashion.

V. PROPOSED GAME-THEORETIC ENERGY SCHEDULE
(GTES) ALGORITHM

In this section, we propose a game-theoretic approach for
optimizing energy consumption. We refer to our approach
as Game-Theoretic Energy Schedule (GTES) algorithm. The
game is played between the power company and its consumers.
The game aims at attaining two objectives at the same time,
namely (i) to reduce system PAR by optimizing energy
schedule, and (ii) to lower the total energy consumption. The
optimization process can be modeled as a two-stage game [7]
as depicted in Algorithms 1 and 2.

1) The users will try to maximize their pay-offs by optimiz-
ing functions (shown in eq. (20)) using IPM.

2) The supplier will then adjust the energy price parameter
consistent with the user’s energy consumption schedule
according to eq. (23).

When the game reaches an equilibrium state, neither users
nor supplier will change their strategies. At the same time, the
system PAR and total energy consumption are reduced.

Algorithm 1 Power company’s (control center’s) game.
Begin: Gather original schedule from all users

All users initialize their schedules from feasible sets
End
Calculate initial energy price parameter α according to
eq. (23)
Repeat

Randomly choose user n, n ∈ N
Signal user n to run algorithm 2
Update the new schedule vector Ln from user n
Update energy price parameter α according to (23)

Until no user wants to change schedule

Algorithm 2 Users’ game.
Begin: Receive signal from supplier

Request α, vector L
User n optimizes schedule by solving the problem in

eq. (20) by using IPM
If xn changes compared to current schedule Then

Inform the center of the new schedule vector Ln
End If

End

Algorithms 1 and 2 describe the moves made by the power
company (typically the control center) and the consumers,
respectively. At the start of the day (e.g. at 12 am), when
the control center will start the algorithm, it sends messages
to all consumers to request their default energy consumption
schedules. The users have to initialize energy consumption
schedules, which satisfy all constraints described in Sec-
tion IV. After receiving all the basic information from the
users, the control center calculates the initial value for energy
price parameter (α) and broadcasts it to all the users. Then, the
loop in Algorithm 1 is executed until the algorithm converges.
The supplier randomly selects a user to run the optimization
in the loop. The selected user is not to be chosen again
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until all other users have executed the loop. The selected user
receives a message with the total energy consumption schedule
vector, Ln, of the whole system. Based on this information,
together with the energy price parameter α, the user is able
to optimize his objective function to find the best schedule
for himself. Each smart meter is assumed to be equipped with
the program to solve the local optimization problem using
IPM for convex optimization as shown in Algorithm 2. Since
IPM has a high degree of accuracy, each user makes the best
possible response. If the user’s schedule changes, his smart
meter updates the new schedule and announces new energy
consumption schedule vector (i.e., the updated Ln) to the
center. The center, therefore, has to adjust the energy price
parameter again based on the new system state.

The supplier center, thus, serves as a data collecting entity. It
receives update schedules from the users, provides them with
general information: system energy consumption schedule
vector Ln. It has to update the energy price parameter α,
but the update is also simple and does not require much
computation. For users, solving the local optimization problem
in IPM is fast and highly efficient. Also, the users do not
have to reveal all the details about their schedules. In other
words, reporting only the total energy consumption schedule
vector (Ln) is sufficient for them. Normally, this type of
information are already monitored by the supplier’s control
center. The knowledge of the parameter ω, which represents
the users’ tolerance toward energy consumption curtailment,
is not required, and this is not revealed to others as this is to
remain private (as discussed earlier in Section IV-A). In other
words, in the proposed algorithm, the users do not have to
worry about revealing the sensitive information to the control
center. For interested readers, the proof of convergence of
the proposed algorithm is presented in the remainder of the
section.

First, we analyze the value range of α. We assume that the
total energy consumption of the whole system is constant:

24∑
h=1

Lh =M (25)

Because α is decided according to eq. (23), we need to
consider the following function.

f(Lh) = (Lh)
2 log(Lh + 1) (26)

We can easily confirm that f(Lh) is strictly convex as its
second derivative contains only positive components for all
Lh > 0. Therefore, f(Lh) also satisfies the second assumption
in Section III-2, that is for each h ∈ H, any real number
L1
h, L

2
h ≥ 0, and any real number 0 < θ < 1, we have:

f(θL1
h + (1− θ)L2

h) < θf(L1
h) + (1− θ)f(L2

h) (27)

Therefore, we have:
24∑
h=1

1

24
× (Lh)

2 log(Lh + 1) ≥ (
1

24

24∑
1

Lh)
2 log(

1

24

24∑
1

Lh + 1)

24∑
h=1

(Lh)
2 log(Lh + 1) ≥ M

2

24
log(
M
24

+ 1)

(28)

TABLE I
ENERGY APPLIANCES AND THEIR AVERAGE CONSUMPTION ON A DAILY

BASIS.

Appliances Average Consumption per day [KW]
Clothes Dryer 2.47

Dishwasher 0.99
Lighting 3.29

Refrigerator 5.89
Washing Machine 0.28

On the other hand, we have:
24∑
h=1

(Lh)
2 log(Lh + 1) ≤ (

24∑
1

(Lh)
2)×max

p∈H
log(Lp + 1)

≤ (

24∑
1

Lh)
2 ×max

p∈H
log(Lp + 1)

≤M2 log(M+ 1)
(29)

Therefore, we can derive the bound for energy price param-
eter α from eqs. (28) and (29).

24p

M log(M24 + 1)
≥ α ≥ p

M log(M+ 1)
(30)

Here, α reaches its maximal value when L1 = L2 = ... =
L24 and PAR = 1. α reaches its minimal value in the worst
case where all energy consumption concentrates in only one
hour. The more imbalanced the load shape becomes, the bigger
α approaches its lower bound. On the other hand, the lower
the peak energy consumption or lower PAR, the nearer α is
to its upper bound. In other words, α is inversely proportional
with PAR.

In a general game, if all users’ objective functions are
strictly concave, then the equilibrium of the game exists and is
unique. Since our users objective functions are strictly concave
also, the equilibrium for our system exists.

Still, the proof of equilibrium existence for our case can be
obtained as follows. Since α is bounded and users could not
consume more than their maximum consumption levels, the
value of users’ objective functions are upper bounded. More-
over, users only upgrade their energy consumption schedules if
they could improve their objective functions. Users’ objective
functions are upper bounded and increasing, therefore, they
all converge to their limits. On the other hand, the energy
price parameter α is upper-bounded, too, and every time
some user optimizes its objective function, α is increased
due to more balanced load shape. Because users plan their
energy schedule by shifting consumption from peak hours, a
lower PAR is achieved. So, the energy price parameter α also
converges to an upper limit. Both user-side’s and supplier-
side’s games converge to their equilibriums. Therefore, there
exists an equilibrium for our proposed game. Moreover, since
the limit is mathematically unique, the equilibrium of this
game is also unique.

In the next section, we present the performance evaluation
of our proposed GTES.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our pro-
posed GTES approach for reducing energy consumption by
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Fig. 4. Comparison of the running time between the proposed GTES, and
conventional CCO and ECG algorithms for various number of users.

comparing it with a number of conventional methods. The
first conventional method is to gather all parameters and
constraints from every user and schedule energy consumption
by applying convex optimization to find schedules for all
the users at once. For quick reference, let this approach be
referred to as Centralized Convex Optimization (CCO). The
second conventional method for comparison is the autonomous
energy-theoretic optimization algorithm in [11] that is referred
to as the Energy Consumption Game (ECG) for ease of
notation.

The simulation environment is constructed with MAT-
LAB [21]. We consider a smart grid infrastructure with a
supplier and a population of consumers. All the consumers
connected to the supplier are equipped with smart meters. The
number of consumers is varied from 5 to 500. Each consumer
has ten to fifteen schedulable appliances and ten to fifteen
unschedulable appliances. The schedulable appliances include
residential electrical appliances with a flexible schedule such
as washing machines, dish washers, and plug-in hybrid electric
vehicles. On the other hand, unschedulable appliances need
to consume energy continuously or have a fixed schedule.
Examples of unschedulable appliances include fridge, light
bulbs/lamps, heaters, and so forth. A list of some typical
home electrical appliances are displayed in Table I based on
[22]. All these settings are randomly generated every time
the simulation is conducted. Note that these settings remain
the same for comparing the different methods in a specific
situation. First, we conduct simulations to compare the running
time of the three methods with up to 30 users. Then, we
evaluate the performance of proposed method, also giving
some comparison with the distributed game-theoretic ECG.
Finally, we also include some comparisons between quadratic
energy price function and our proposed price function.

Fig. 4 demonstrates that the running time of CCO increases
quite fast, almost at an exponential rate, while the two game-
theoretic methods require significantly low completion time as
the number of users increases. The large number of parameters
seriously affects the running time of convex optimization (i.e.,
CCO), even when the number of users remains rather small.
Furthermore, it can affect even the convergence guarantee. In
our conducted experiment, CCO often fails to converge when
the number of consumers exceeds 30. Compared with this
simulation, the number of appliances for each user in real life
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Fig. 5. Number of iterations until convergence in case of CCO, ECG, and
the proposed GTES for different numbers of users.
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Fig. 6. Average time needed for each iteration in case of CCO, ECG, and
the proposed GTES for different numbers of users.

is even higher, which is the reason why a fully centralized
control such as CCO may not be practical. Figs. 5 and 6
illustrate more analysis about this.

In Figs. 5 and 6, the number of iterations needed for each
algorithm to converge and the average time per iteration are
plotted, respectively. The running time in the previous analysis
is the product of these two parameters. Fig. 5 demonstrates
how the number of iterations required for CCO and both
the game-theoretic algorithms (including our proposed GTES)
increases gradually with the number of consumers. However,
the average time needed for each iteration (as shown in
Fig. 6) changes slowly for the game-theoretic algorithms
while it rises drastically in case of CCO. This is expected as
the game-theoretic approaches only require solving the local
optimization for each consumer. These results indicate that
CCO is not scalable enough for a large number of consumers
in contrast with its game-theoretic counterparts, i.e., ECG and
GTES. As a consequence, in the remainder of this section, the
performances of ECG and the proposed GTES are taken into
consideration for comparison.

Figs. 7, 8, and 9 demonstrate the load shape, convergence of
system PAR, and supplier price, respectively, for the proposed
GTES approach for a scenario of 50 users. Fig. 7 illustrates
the system load shape for the non-scheduled scheme and that
for the scheduling under the proposed GTES scheme over
24 hours. It is evident that the energy consumption had been
shifting and adjusting at the same time, resulting in a more
balanced load shape and a lower total load. The system PAR
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Fig. 8. Convergence of system PAR in case of the proposed GTES.

changes from 2.258 to 1.837. In addition, the total system
energy consumption also reduces from 3707.8 KW to 3447.7
KW. In Fig. 8, it is remarkable that the convergence happens
significantly fast, and the system PAR dropped drastically
after the first round (when all the consumers had run the
algorithm once). After that, the system PAR changes slowly
and stabilizes after 2 to 3 rounds. This confirms that game-
theoretic optimization would converge within O(n) if every
player (i.e., each of the consumers as well as the power
company) follows the best move. Because, GTES uses IPM
to solve the local problem for each user, all the users are
able to find their optimal schedules, and therefore, the system
approaches equilibrium state quite rapidly. Fig. 9 demonstrates
the convergence of the energy price parameter α. As shown in
the figure, this parameter convergence also happens substan-
tially fast, similar to that on the user-side. In this way, both
the games on the user-side and the supplier-end converge to
equilibrium.

Fig. 10 illustrates the number of iterations needed for the
convergences of ECG and the proposed GTES. Since both
of these methods are based on game theory, they converge
very fast in proportional with the number of consumers. Fur-
thermore, as the number of consumers grows larger, the ratio
between the number of iterations and number of consumers
decreases a little. This can be explained by the fact that
the bigger the system becomes, the less effect is inflicted
by changing a single consumer’s schedule. Thus, we confirm
that game-theoretic optimization approaches have high con-
vergence speeds, and they scale well with the increase in the
number of consumers.
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Fig. 9. Convergence of supplier price in case of the proposed GTES.
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In Fig. 11, we compare the PAR reduction between the ECG
and the proposed GTES. Fig. 11 illustrates that our proposed
GTES method results in higher PAR reduction in contrast with
ECG. This good performance of the proposed method can
be attributed to its consideration of not only shifting energy
consumption while scheduling, but also its ability to adjust
energy consumption levels at different hours. So, by adding
more to the off-peak hours and decreasing a little at peak
hours, PAR is reduced even further in GTES.

Fig. 12 demonstrates the total energy consumption after
running the ECG and GTES algorithms. ECG is found to be
only shifting energy consumption. As a consequence, ECG
does not change the amount of energy consumption. In contrast
with that, the proposed GTES method results in an average
12% reduction of the energy consumption.

Finally, we conduct a simulation to compare the differences
between energy price functions. As we have mentioned in
Section IV, choosing between the more drastic quadratic
function and our logarithmic based function is a trade-off
between the system performance and computation time. In
order to compare these two functions, we use the game-
theoretic algorithm with only one objective in ECG, namely
shifting energy consumption to reduce PAR. The consumers
try to minimize their energy cost by shifting their consump-
tion to “cheaper” hours. Clearly, unlike our proposed GTES
method, the total energy consumption will be fixed in ECG,
and the same holds for the energy price parameter. The results
are depicted in Figs. 13 and 14. As the results demonstrate,
the quadratic function displays a small improvement in PAR
reduction in contrast with that in our energy price function and
the difference becomes more insignificant when the number
of users increases. However, the running time of quadratic
function remains larger (in fact nearly double) compared to
the proposed energy price function used in GTES. This result
indicates that the performance of the proposed logarithmic-
based price function is better than the existing energy price
function.

VII. CONCLUSION

In this paper, we considered a practical smart grid infras-
tructure, where the power company and its consumers are
proposed to play their own games to optimize their energy
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Fig. 14. Running time of the proposed price function and the conventional
quadratic function.

schedules. In our proposed two-stage game in smart grid,
the objective is to achieve a reduction in both the system
PAR and the total energy consumption. We apply a pricing
scheme, whereby the energy price changes according to the
whole system energy consumption during each hour so that
all the consumers may have appropriate monetary incentives
to follow the system. Since the number of parameters to be
optimized is rather high, a fully centralized control by using
convex optimization is not found to scale well with a high
population of users. To overcome this, we proposed a game-
theoretic centralized optimization scheme. The simulation
results demonstrated that the proposed algorithm converged
in O(n) iterations, and achieved good PAR reduction and
energy consumption reduction. These results are desired from
the power company’s point of view, and providing that it
has the knowledge of the consumers’ energy schedules, the
power company would be able to predict the total energy
consumption at each hour in order to produce or estimate the
necessary amount of energy (to purchase from the market).
Also, every user has his electric cost reduced in an effective
manner, and the values of the users’ objective functions (which
represent their pay-offs) are increased.
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