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Abstract—This paper focuses on the delivery probability per-
formance in a two-hop relay mobile ad hoc network (MANET)
with erasure coding. Available works in this line either considered
a simple extreme case of achieving the delivery probability 1, or
assumed a simple traffic pattern with only one source-destination
pair, or studied a very special MANET scenario (i.e., the sparsely
distributed MANET) by assuming that whenever two nodes meet
together they can transmit to each other. Obviously, such models
cannot be applied for an accurate delivery probability analysis in
the general MANETs where the interference, medium contention
and traffic contention issues are of significant importance. In this
paper, a general finite-state absorbing Markov chain theoretical
framework is first developed to model the complicated message
spreading process in the challenging MANETs. Based on the the-
oretical framework, closed-form expressions are further derived
for the corresponding message delivery probability under any
given message lifetime and message size, where all the above
important issues in MANETs are carefully incorporated into
analysis. As verified through extensive simulation studies, the
new framework can be used to accurately predict the message
delivery probability behavior and characterize its relationship
with the message size, replication factor and node density there.

Index Terms—Mobile ad hoc networks, delivery probability,
two-hop relay, erasure coding.

I. INTRODUCTION

A mobile ad hoc network (MANET) is a peer-to-peer

network without any pre-existing infrastructure or centralized

administration, which consists of fully self-organized mobile

nodes. As it can be rapidly deployed and flexibly reconfigured,

the MANET has found many promising applications, such

as the disaster relief, emergency response, daily information

exchange, etc., and thus becomes an indispensable component

among the next generation networks [1], [2].

Since their seminal work in [3], a significant amount of work

has been done for a thorough understanding of the delivery

delay performance of various routing protocols in MANETs.

Zhang et al. in [4] developed an ODE (ordinary differential

equations) based framework to analyze the delivery delay of

epidemic routing and its variants. Later, Hanbali et al. focused

on a multicopy two-hop relay algorithm and explored the

impact of packet lifetime (time-to-live TTL) on the packet

delivery delay in [5], [6]. Recently, Liu et al. derived closed-

form expressions for the packet delivery delay of erasure

J. Liu, H. Nishiyama and N. Kato are with the Graduate School of
Information Sciences, Tohoku University, Aobayama 6-3-09, Sendai, 980-
8579, JAPAN. E-mail: {liu-jia,kato}@it.ecei.tohoku.ac.jp.

X. Jiang is with the School of Systems Information Science, Future
University Hakodate, Kamedanakano 116-2, Hakodate, Hokkaido, 041-8655,
JAPAN. E-mail: jiang@fun.ac.jp.

coding enhanced two-hop relay in [7] and that of group-based

two-hop relay in [8].

The delivery delay study [3]–[8], although important and

meaningful, can only tell the expected time it takes a routing

protocol to deliver a message (or packet) from the source to the

destination, i.e., the mean time required to achieve the delivery

probability 1, which is actually a simple extreme case of the

delivery probability study. Obviously, it is of more interest

for network designers to know the corresponding delivery

probability under any given message lifetime (or permitted

delivery delay). Further notice that in the challenging MANET

environment, multiple message replicas are often propagated

to improve the delivery performance, where a relay node

receiving a message may forward it or carry it for long

periods of time, even after its arrival at the destination. Such

combination of message replication and long-term storage

imposes a severe overhead on the mobile nodes which are

usually not only power energy-constrained but also buffer

storage-limited. Thus, the message lifetime should be carefully

tuned so as to reduce the network resource consumption in

terms of buffer occupation and power consumption while

simultaneously satisfy the specified delivery performance re-

quirement.

It is noticed that there have been some efforts in literature

focusing on the delivery probability study. Panagakis et al.

in [9] analytically derived the message delivery probability

of two-hop relay under a given time limit by approximating

the cumulative distributed function (CDF) of message delivery

delay, with the assumption that for any node pair the message

can be successfully transmitted whenever they meet each other.

In [10], Whitbeck et al. explored the impact of message

size, message lifetime and link lifetime on the message

delivery ratio (probability) of epidemic routing by treating

the intermittently connected mobile networks (ICMNs) as

edge-Markovian graphs, where each link (edge) is considered

independent and has the same transition probabilities between

“up” and “down” status. Later, Krifa et al. in [11] explored

the impact of message scheduling and drop policies on the

delivery probability performance of epidemic routing, and

proposed a distributed scheduling and drop policy based on

statistical learning to approximate the optimal performance.

More recently, the optimization issue of message delivery

probability under specific energy constraints and message

lifetime requirement has also been intensively addressed in

the context of delay tolerant networks (DTNs) [12]–[20], in

which the basic two-hop relay was adopted for packet routing

and a wireless link becomes available whenever two nodes
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meet each other.

A common limitation of the available models in [9], [10],

[12]–[20] is that, all these works assumed a single flow

(source-destination pair) in their analysis such that all other

nodes act as pure relays for this flow. Such models, although

simple and easy to use, may neglect an important fact that

for the general MANET scenarios, multiple traffic flows may

co-exist and a relay node may simultaneously carry messages

belonging to multiple flows. Moreover, all these models (no

matter for the ICMNs or for the DTNs) focus on a very special

MANET scenario, i.e., the sparsely distributed MANET, by

assuming that whenever two nodes meet together they can

transmit with each other. Obviously, the available models

cannot be applied for delivery probability analysis in the gen-

eral MANETs where the interference and medium contention

issues are of significant importance. In this paper, we study the

delivery probability performance of two-hop relay MANETs

with a careful consideration of the above important issues. The

main contributions of this paper are summarized as follows.

• We focus on the two-hop relay algorithm in MANETs

with erasure coding and more general traffic pattern,

where the message at each source node is erasure coded

into multiple frames (coded blocks). We develop a general

finite-state absorbing Markov chain theoretical frame-

work to model the complicated message spreading pro-

cess in the challenging MANETs, which can also be used

to analyze the delivery probability performances under

other popular routing protocols, like the epidemic routing

[3], [4], [21], the two-hop relay with f -cast [22], [23] and

the group-based two-hop relay [8], etc.

• Based on the Markov chain framework, we further derive

closed-form expressions for the corresponding message

delivery probability under any given message lifetime and

message size by adopting the blocking matrix technique,

where the important issues of interference, medium con-

tention and traffic contention in MANETs are carefully

incorporated into the analysis.

• Extensive simulation studies are conducted to validate

our theoretical framework, which indicates that the new

framework can be used to accurately predict the message

delivery probability in MANETs with two-hop relay

and erasure coding, and characterizes how the delivery

probability varies with the parameters of message size,

replication factor and node density there.

The rest of this paper is outlined as follows. Section II

introduces the system models, the routing protocol and the

scheduling scheme considered in the paper. In Section III, we

develop a Markov chain theoretical model for the delivery

probability analysis under any given message lifetime and

message size. In Section IV, we present numerical results

to validate the new theoretical framework and explore the

minimum message lifetime required to achieve a specified

delivery probability. Finally, we conclude the whole paper in

Section V.

(a) Illustration of the transmission
model.

(b) Cells in a transmission-group
with α = 4.

Fig. 1. Illustration of a cell-partitioned network with m = 16.

II. PRELIMINARIES

A. System Models

The considered mobile ad hoc network is a unit torus with

n mobile nodes. The torus is evenly divided into m×m equal

cells (or squares), each cell of side length 1/m as shown in

Fig. 1a. Time is slotted and nodes randomly roam from cell

to cell according to the i.i.d. mobility model [24], which is

defined as follows: at time slot t = 0, a node is initially placed

in one of the m2 cells according to the uniform distribution.

The node randomly selects a cell from the m2 cells with equal

probability of 1/m2 independent of other nodes, and moves

to the selected cell at time slot t = 1. The node then repeats

this process in every subsequent time slot. One can see that

at each time slot, the n nodes are uniformly and randomly

distributed in the m2 cells. Since the node movements are

also independent from time slot to time slot, the nodes are

totally reshuffled at each time slot.

We employ the protocol model in [25] to address the

interference among simultaneous link transmissions. Similar

to [23], we assume that each time slot will be allocated only

for data transmissions in one hop range. The data transmission

model is defined as follows: suppose node Ti is transmitting

to node Ri at time slot t as shown in Fig. 1a, and denote by

T t
i and Rt

i the positions of Ti and Ri, respectively. According

to the protocol model, the data transmission from Ti to Ri can

be successful if and only if the following two conditions hold

for any other simultaneous transmitting node Tj :

(1) |T t
i −Rt

i| ≤ r
(2) |T t

j −Rt
i| ≥ (1 + ∆)|T t

i −Rt
i|

Here r is the transmission range adopted by each node, and

∆ > 0 is a protocol specified factor to represent the guard

zone around each receiver.

In order to fully characterize the traffic contention issue in

MANETs, we consider here the permutation traffic pattern [7],

[23], [26], where each node has a locally generated traffic flow

to deliver to its destination and also needs to receive a traffic

flow originated from another node. Since there are n mobile

nodes in the network, it is easy to see that there exist in total

n distinct traffic flows. To simplify the analysis, similar to

previous works [9], [10], [12]–[20], we assume that the local

traffic flow at each node has only a single message. Without

loss of generality, we focus on a tagged flow hereafter and
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denote its source and destination by S and D, respectively.

For the tagged flow, the message generated at the source

S is assumed to have in total ω blocks (ω ≥ 1), where a

single block can be successfully transmitted during a time slot

(or meeting duration). We further assume that the message is

relevant during τ time slots, i.e., the message is labeled with a

lifetime of τ time slots, and will be dropped from the network

if it fails to make itself to the destination D within τ time

slots.

Remark 1: Note that the node mobility is homogeneous

under the i.i.d. model, where during each time slot all node

pairs have the same probability to encounter and the n nodes

are uniformly and randomly distributed in the m2 cells. Such

features of homogeneous node meeting and uniform node dis-

tribution, although simple and easy to use, are different from

other more practical node distributions, like the correlated

distribution, the clustered distribution, the home-point distri-

bution, etc., where nodes exhibit significant inhomogeneities

in spatial distribution over the network area.

Remark 2: The main difficulties in extending the i.i.d.

model to take into account more complex mobility, such as

the random walk model, random waypoint model, random

direction model, correlated mobility model, reference point

group mobility, etc., are two folds: the first difficulty is to

characterize the node meeting process which depends solely

on the node mobility, and the second one is to derive the data

transmission probability during each node meeting which is

related to both the spatial distribution and data transmissions

of other nodes. It is notable that in MANETs, even though a

node pair meet together in a time slot they may fail to transmit

data due to the interference caused by other simultaneous data

transmissions in the network. These two difficulties combined

together make the analytical modeling of delivery performance

in MANETs much more challenging. Actually, the main

reason behind adopting the simple i.i.d. model is that it is

very helpful to keep the theoretical analysis tractable and thus

enables closed-form analytical results to be developed for the

message delivery probability in the challenging MANETs.

B. Two-Hop Relay with Erasure Coding

The two-hop relay, since first proposed by Grossglauser and

Tse (2001) in [27], has been extensively explored in literature

and proved to be a popular and efficient routing protocol

for DTNs. However, its delivery performance remains largely

unknown in the general MANET environment, where the

interference may create extra delay in the delivery of packets.

It is further noticed that extensive simulation studies have

been conducted in [28] to show that the delay performance

of two-hop relay in DTNs can be improved via incorporating

the erasure coding technique. Therefore, we focus on the

two-hop relay with erasure coding in this paper and develop

a theoretical framework to analytically study its delivery

performance.

According to the two-hop relay algorithm with erasure

coding [22], [28], for the tagged flow, the message is first

erasure coded into ω · β equal sized frames (or code blocks)

after it is locally generated at S, where β is the replication

factor. Since each frame is almost the same size as the

original block, we assume that it can also be successfully

transmitted during a time slot. Any (1 + ǫ) · ω frames can

be used to successfully reconstruct the message, where ǫ is a

small constant and it varies with the adopted erasure coding

algorithm. Similar to [22], [28], we ignore the constant ǫ here

and thus the message can be successfully recovered at the

destination D with no less than ω frames collected before it

expires (i.e., within τ time slots).

After erasure coding the message into ω · β frames, the

source node S starts to deliver out these frames according to

the two-hop relay algorithm [23], [24], [27]. Every time S
is selected as the transmitter via the transmission scheduling

scheme introduced in Section II-C, it operates as follows:

Step 1: S first checks whether D is in the transmission

range. If so, S conducts with D the “source-to-destination”

transmission, where a frame is sent directly to D.

Step 2: For the case that D is not in the transmission range

of S, if there is no other node in the one-hop neighborhood

of S, S remains idle for the time slot; otherwise, S randomly

selects a node, say R, from the one-hop neighborhood as the

receiver, and flips an unbiased coin;

• If it is the head, S chooses to perform the “source-to-

relay” transmission with R. S initiates a handshake with

R to check whether R is carrying a frame received from

S. If so, S remains idle for the time slot; otherwise, S
sends to R a frame destined for D.

• Otherwise, S chooses to perform with R the “relay-to-

destination” transmission. S first checks whether it is

carrying a frame destined for R. If so, S forwards the

frame to R; otherwise, S stays idle for the time slot.

It is noticed that distinguished from available works which

assumed a simple scenario of single traffic flow, we consider in

this paper the permutation traffic pattern to fully characterize

the traffic contention issue in MANETs. Under such traffic

pattern, each node may not only carry the frames of its

own message, but also simultaneously carry multiple frames

originated from other nodes in the network. To simplify the

analysis and thus keep the theoretical framework tractable, we

assume that each frame will be delivered to at most one relay

node and each relay node will carry at most one frame from

S.

We consider a single-copy version of the two-hop relay with

erasure coding, where S either delivers a frame to D or sends

it to a relay node. After sending a frame to a relay node, S
retains a copy of the frame as backup; while the relay node

will delete the frame from the buffer after forwarding it to D.

Therefore, before arriving at D, each frame may have at most

two copies in the network, one in the relay node and the other

one in S.

C. Transmission Scheduling

Similar to previous studies [7], [23], [29], we consider a

local transmission scenario where a transmitter in a cell can

only transmit to receivers in the same cell or other eight

adjacent cells (two cells are called adjacent cells if they

share a common point). Thus, the transmission range can
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be accordingly determined as r =
√
8/m. It is easy to see

that two links can transmit simultaneously if and only if they

are sufficiently far away from each other. To avoid collisions

among simultaneous transmitting links and support as many

simultaneous link transmissions as possible, we adopt here the

transmission-group based scheduling scheme [7], [23], [29]–

[31].

Transmission-group: A transmission-group is a subset of

cells where any two of them have a vertical and horizontal

distance of some multiple of α cells and all the cells there

could transmit simultaneously without interfering with each

other.

With such a transmission-group definition, all m2 cells are

actually divided into α2 distinct transmission-groups. If each

transmission-group becomes active (i.e., has link transmis-

sions) alternatively, then each cell will also become active

every α2 time slots. As illustrated in Fig. 1b for the case

α = 4, there are in total 16 transmission-groups, and all shaded

cells belong to the same transmission-group.

Setting of Parameter α: As shown in Fig. 1b, suppose node

S in an active cell is transmitting to node V in a time slot. It is

easy to see that another transmitter, say K, in another active

cell is at least α − 2 cells away from V . According to the

protocol interference model [25], we should have (α−2)· 1
m

≥
(1+∆) ·r to ensure the successful data reception at V . Notice

that α ≤ m and r =
√
8/m, then the parameter α can be

determined as

α = min{⌈(1 + ∆)
√
8 + 2⌉,m} (1)

It is noticed that with the setting of α = m, all network

cells are divided into m2 distinct transmission-groups, with

each transmission-group containing a single cell. Therefore,

the network can support only one active transmitter-receiver

pair during each time slot.

For the transmission-group based scheduling scheme, a node

is assumed to be able to obtain the cell id where it resides at

the beginning of each time slot. Actually, for a given network

cell partition, such hypotheses can be satisfied by adopting the

global positioning system (GPS) or some node localization

schemes [32], [33]. Therefore, after obtaining the cell id, a

node can easily judge whether it is inside an active cell or

not for the current time slot, and then the nodes in an active

cell can compete to become the transmitter via a distributed

coordination function (DCF)-style mechanism [34].

Remark 3: The transmission-group based scheduling

scheme has the following two advantageous features: firstly,

it is fully distributed and thus it can be implemented without

any centralized management; secondly, it enables closed-form

expressions to be derived for the transmission probability

under the two-hop relay during each time slot. It is also

noticed that in (1) we derive α according to the possible

maximum distance (i.e., r =
√
8/m) between a transmitter-

receiver pair in two adjacent cells. However, one can see that

the distance between a transmitter-receiver pair selected for

each active cell may be less than
√
8/m with high probability

during each time slot. Consequently, the scheduling scheme

may unavoidably result in an inefficient spatial reuse due to

the fixed setting of α.

III. MESSAGE DELIVERY PROBABILITY

In this section, we first introduce some basic probabilities

under the two-hop relay with erasure coding, develop the

Markov chain-based theoretical framework, and then proceed

to derive the message delivery probability.

A. Some Basic Probabilities

Lemma 1: For a time slot and the tagged flow, if we denote

by p1 the probability that S conducts a “source-to-destination”

transmission with the destination node D and denote by p2 the

probability that S conducts a “source-to-relay” transmission or

“relay-to-destination” transmission with some other node, then

we have

p1 =
1

α2

(

9n−m2

n(n− 1)
−

(

1− 1

m2

)n−1
8n+ 1−m2

n(n− 1)

)

(2)

p2 =
1

α2

(

m2 − 9

n− 1

(

1−
(

1− 1

m2

)n−1)

−
(

1− 9

m2

)n−1)

(3)

Lemma 2: For a time slot and the tagged flow, given that

there are t1 relay nodes each carrying a frame from the source

node S and t2 relay nodes carrying no frames from S, we

denote by pr(t1), pd(t2) and ps(t1, t2) the probability that the

destination node D will receive a frame, the probability that

S will successfully deliver out a frame to a new relay node

(if t1 < ω · β), and the probability of simultaneous “relay-to-

destination” transmission (where D obtains a frame from the

t1 relay nodes) and “source-to-relay” transmission (where S
delivers out a frame to the t2 relay nodes) in the next time

slot. Then we have

pr(t1) = p1 +
t1

2(n− 2)
p2 (4)

pd(t2) =
t2

2(n− 2)
p2 (5)

ps(t1, t2) =
t1t2(m

2 − α2)

4m2α4

n−5
∑

k=0

(

n− 5

k

)

h(k)

·
{ n−4−k

∑

t=0

(

n− 4− k

t

)

h(t)
(

1− 18

m2

)n−4−k−t
}

(6)

where

h(x) =
9
(

9
m2

)x+1 − 8
(

8
m2

)x+1

(x+ 1)(x+ 2)
(7)

The derivations of (2), (3), (4), (5) and (6) are similar to that

in [35], and please refer to [35] for details. From Lemma 1,

one can see that the notation p1 + p2 actually denotes the

probability that S conducts a data transmission in a time slot.

It is noticed that in Lemma 2, since t1 denotes the number

of relay nodes each carrying a frame from S and t2 denotes

the number of relays carrying no frames from S, we have

t1+ t2 = n−2. For the special setting that t1 = n−2 < ω ·β,

we have t2 = 0 and thus pd(t2) = 0, which means that S
cannot deliver out a frame in the current time slot. Note that

in order to simplify the analysis, we assume that each relay

can carry at most one frame from S. Therefore, for the case
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(a) SR Transition Case (b) RD Transition Case

(c) SR+RD Transition Case (d) SD Transition Case

Fig. 2. Transition cases of a general transient state (j, k), where 1 ≤ j ≤
ω · β, 0 ≤ k < ω, k < j.

that t1 = n− 2 < ω · β, S can deliver out a frame only after

a relay has forwarded its frame to the destination D.

Remark 4: It is noticed that in Step 2 of the two-hop relay

scheme, S may choose to perform with R “source-to-relay”

transmission with any probability ρ ∈ [0, 1] and perform with

R “relay-to-destination” transmission with probability 1 − ρ.

In “source-to-relay” transmission, S acts as a source and tries

to send a frame of its own message (destined for D); while in

“relay-to-destination” transmission, S acts as a relay and tries

to send a frame destined for R. Therefore, ρ can be regarded

as the willingness that a node would prefer to send a frame

for its own message; the bigger the ρ is, the more incentive

to deliver its own message. As our main focus is to develop

a theoretical framework to study the delivery performance of

two-hop relay in mobile ad hoc networks with erasure coding,

similar to previous works [24], [36], [37], we consider a simple

setting of ρ = 1/2 in this paper. Actually, one can see that the

general setting of ρ will affect the details of delivering and

receiving a frame, i.e., the probability that S will deliver out

a frame to a relay and the probability that D will receive a

frame in each time slot; while it will never change the basic

Markovian property of message delivery process under the

two-hop relay with erasure coding. Therefore, our framework

can be readily applied to the general settings of ρ after the

probability results in (4), (5) and (6) are accordingly updated.

B. Markov Chain Framework

For the tagged flow, as the message generated at the source

node S is erasure coded into ω·β frames and is relevant only in

τ time slots, the destination node D needs to collect at least

ω frames within τ time slots so as to successfully recover

the message. If we denote by (j, k) a general transient state

during the message delivery process that S is delivering the jth
frame and D has already received k distinct frames, and further

denote by (∗, k) a transient state that S has already finished

dispatching all ω · β frames while D has only received k of

them, 1 ≤ j ≤ ω ·β, 0 ≤ k < ω, then we can characterize the

message delivery process with a finite-state absorbing Markov

chain. Specifically, if the tagged flow is in state (j, k) at the

current time slot, only one of the following four transition

cases illustrated in Fig. 2 may happen in the next time slot.

• SR Case: “source-to-relay” transmission only, i.e., S

(a) State transition diagram for 0 ≤ k ≤ ω − 2

(b) State transition diagram for k = ω − 1

Fig. 3. Transition diagram of the Markov chain for the message delivery
process.

successfully delivers the jth frame to a new relay node

while none of the relays delivers a frame to D. As shown

in Fig. 2a that under such a transition case, the state (j, k)
may transit to two different neighboring states depending

on the current frame index j.

• RD Case: “relay-to-destination” transmission only, i.e.,

some relay node successfully delivers a frame to D while

S fails to deliver out the jth frame to a new relay node.

As shown in Fig. 2b that there is only one target state

(j, k + 1) under the RD case.

• SR+RD Case: both “source-to-relay” and “relay-to-

destination” transmissions, i.e., these two transmissions

happen simultaneously. We can see from Fig. 2c that

depending on the value of j there are two possible target

states under the SR+RD case.

• SD Case: “source-to-destination” transmission only, i.e.,

S successfully delivers a frame to D. As shown in Fig. 2d

that under the SD case, the state (j, k) may transit to

(j + 1, k + 1) or (∗, k + 1), similar to that under the

SR+RD case.

If we denote by A the absorbing state that the destination

node D has collected ω distinct frames, then the transition

diagrams in Fig. 2 indicate that the message delivery pro-

cess can be modeled as a discrete-time finite-state absorbing

Markov chain illustrated in Fig. 3, where Figs. 3a and 3b each

represents some cases of the full chain. Specifically, Fig. 3a

represents the cases that D may receive at most one more

frame given that it has already received k frames, 0 ≤ k ≤ ω−
2; Fig. 3b shows the transition diagrams of how D may receive

the last frame. The transitions of SR, RD, SD and SR+RD

in Fig. 3 correspond to two-hop transmissions of “source-to-

relay”, “relay-to-destination”, “source-to-destination” and both

“source-to-relay” and “relay-to-destination”, respectively. For

each transient state, the transition of Self-loop corresponds to

the transition back to itself.

As shown in Fig. 3, there are in total ω rows of transient

states, with Lk transient states in the kth (0 ≤ k ≤ ω − 1)
row, where

Lk = ω · β − k + 1 (8)
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Therefore, the total number of transient states δ in Fig. 3 can

be determined as

δ =
ω

2
(2ω · β − ω + 3) (9)

Consider the tth transient state of the kth row in the Markov

chain of Fig. 3, 0 ≤ k ≤ ω − 1, 1 ≤ t ≤ Lk, if we denote

by ur the number of relay nodes each carrying a frame from

node S, and denote by uo the number of relay nodes carrying

no frames from S, then we have

ur = t− 1 (10)

uo = n− t− 1 (11)

Remark 5: Combining (10) and (11) with (4), (5) and (6) in

Lemma 2, it is easy to see that for the tth transient state of the

kth row in the Markov chain of Fig. 3, the transitions of SR

case, RD case, SR+RD case, SD case and Self-loop case will

happen with probability pd(uo) − ps(ur, uo), pr(ur) − p1 −
ps(ur, uo), ps(ur, uo), p1 and 1−pd(uo)−pr(ur)+ps(ur, uo),
respectively.

C. Derivations of Delivery Probability ϕ(ω, β, τ)

Before deriving the message delivery probability, we first

introduce the following definition about the message delivery

delay.

Definition 1: For a message locally generated at the source

node S which is further erasure coded into ω · β frames, the

delivery delay of the message is defined as the time elapsed

between the time slot when S starts to deliver the first frame

of the message and the time slot when the destination node D
receives ω distinct frames of the message.

For the tagged flow, if we denote by Td the message

delivery delay and denote by ϕ(ω, β, τ) the message delivery

probability under the message lifetime constraint τ , then we

have

ϕ(ω, β, τ) = Pr(Td ≤ τ) =

τ
∑

t=1

Pr(Td = t) (12)

Based on the Markov chain framework, now we are ready

to derive ϕ(ω, β, τ). As shown in Fig. 3, all δ transient states

in the Markov chain are arranged into ω rows. We number

these transient states sequentially as 1, 2, . . . , δ in a left-to-

right and top-to-down way. For these transient states, if we

let qij denote the transition probability from state i to state

j, then we can define a matrix Q = (qij)δ×δ of transition

probabilities among δ transient states there. Similarly, if we

let bi denote the one-step transition probability from state i
to the absorbing state A, then we can also define a vector

B = (bi)δ×1 representing the transition probabilities from δ
transient states to state A.

Notice that Pr(Td = t) in (12) denotes the probability that

the ωth frame arrives at the destination D by the end of the

tth time slot, i.e., the probability that the Markov chain gets

absorbed by the end of the tth time slot. Given that the Markov

chain starts from the first state, i.e., state (1, 0), according to

the Markov chain theory [38], then we have

Pr(Td = t) =

δ
∑

i=1

q
(t−1)
1i · bi (13)

where q
(t)
ij denotes the probability that by the end of the tth

time slot the Markov chain is in the jth state given that the

Markov chain starts from the ith state.

Combining with the fact that q
(t)
ij is actually the ij-entry

of the matrix Qt, i.e., Qt = (q
(t)
ij )δ×δ , (13) can be further

transformed as

Pr(Td = t) = e ·Qt−1 ·B (14)

where e = (1, 0, . . . , 0).
Substituting (14) into (12), then we have

ϕ(ω, β, τ) =
τ
∑

t=1

e ·Qt−1 ·B

= e · (I−Q)−1 · (I−Qτ ) ·B
= e ·N · (I−Qτ ) ·B (15)

where I is the identity matrix, and N = (I − Q)−1 is the

fundamental matrix of the Markov chain in Fig. 3.

From (15) we can see that in order to derive the message

delivery probability ϕ(ω, β, τ), the only remaining issue is to

derive the matrices Q, N and B, as introduced in the following

section.

D. Derivations of Matrices Q, N and B

Notice that for the Markov chain in Fig. 3, the transitions

happen only among transient states of the same row or

neighboring rows, and thus the matrix Q can be defined as

Q =



























Q0 Q
′

0

Q1 Q
′

1

. . .
. . .

Qk Q
′

k

. . .
. . .

Qω−2 Q
′

ω−2

Qω−1



























(16)

where the block (or sub-matrix) Qk of size Lk×Lk defines the

probabilities of transitions among the kth row of the Markov

chain, Q
′

k of size Lk × Lk+1 defines the probabilities of

transitions from the kth row to the (k + 1)th row, and all

other blocks are zero matrices and omitted here for simplicity.

Now we proceed to derive the blocks {Qk} and {Q′

k}.

Definitions of Qk: Let Qk(i, j) denote the ij-entry of the

block Qk, i, j ∈ [1, Lk], then the non-zero entries of Qk can

be defined as:

Qk(i, i) =











1 + ps(ur, uo)− pr(ur)− pd(uo)

if 1 ≤ i < Lk

1− pr(ur) if i = Lk

(17)

Qk(i, i+ 1) = pd(uo)− ps(ur, uo) if 1 ≤ i < Lk (18)

Definitions of Q
′

k: The block Q
′

k is of size Lk × Lk+1,

where its non-zero ij-entry Q
′

k(i, j) is defined as follows.

Q
′

k(i, i) = p1 + ps(ur, uo) if 1 ≤ i < Lk (19)
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Q
′

k(i, i− 1) =











pr(ur)− p1 − ps(ur, uo)

if 2 ≤ i < Lk

pr(ur) if i = Lk

(20)

Since the fundamental matrix N = (I−Q)
−1

, we can

derive N based on the matrix Q. Please refer to [35] for the

details of derivation for matrix N.

Now we proceed to define the matrix B. It is easy to see

that B can also be defined as

B = (0,0, . . . ,Bω−1)
T (21)

where 0 is the zero matrix.

Definitions of Bω−1: The block Bω−1 is of size Lω−1×1,

where its non-zero ij-entry Bω−1(i, j) can be defined as:

Bω−1(i, 1) = pr(ur) if 1 ≤ i ≤ Lω−1 (22)

Combining (15), (16), (17), (18), (19), (20), (21) and (22),

then we get matrices Q, N and B, and thus the message

delivery probability ϕ(ω, β, τ).

Remark 6: Notice that the Markov chain-based theoretical

framework, although developed for the two-hop relay with

erasure coding in this paper, can also be used to analyze the

delivery probability performances under other popular routing

schemes, like the epidemic routing [3], [4], [21], the two-hop

relay with f -cast [22], [23] and the group-based two-hop relay

[8], etc. It is noticed that under such routing protocols the

probability that a node will deliver a packet (or copy) to a

relay or the destination in a time slot, depends only on the

current network state (in terms of node spatial distribution

and copy distribution among nodes), i.e., independent of the

network states in previous time slots. Obviously, such feature

satisfies the mathematical definition of Markov chain, and thus

the message delivery process under these routing protocols can

also be modeled by a Markov chain framework. However, it

is further noticed that when operating under different routing

protocols, the detailed operations that a node may follow

can also be different. For example, with the two-hop relay

routing, after receiving a packet from the source a relay node

can only forward the packet to the destination; while under

the epidemic routing, the relay node can further replicate the

packet to other relay nodes. Therefore, the transition diagram

details of the Markov chain framework, i.e., the transitions and

also the corresponding transition probabilities from a transient

state to other transient states (and the absorbing state), need

to be carefully reexamined according to the specific routing

protocol.

IV. NUMERICAL RESULTS

In this section, we first provide simulation studies to verify

the Markov chain theoretical framework, then apply it to

explore how network parameters would affect the message

delivery probability, and also the minimum message lifetime

required to achieve a specified delivery probability.
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(a) Network scenario (m = 8, n = 60, ω = 4, β = 2).
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(b) Network scenario (m = 16, n = 160, ω = 3, β = 6).

Fig. 4. Comparisons between simulation results and theoretical ones for
model validation.

A. Simulation Settings

A specific simulator was developed to simulate the message

delivery process under the two-hop relay algorithm with

erasure coding, which is now available at [39]. Similar to

the settings in [40], [41], ∆ is fixed as ∆ = 1 and thus the

transmission-group is defined with α = min{8,m}. Besides

the i.i.d. mobility model considered in this paper, we also

implemented the simulator for the popular random walk model

[42], [43] and random waypoint model with waiting time tw
[44]. For each network setting of (m,n, ω, β, τ), the simulated

message delivery probability was calculated as the average

value of 102 batches of simulation results, where each batch

consists of 104 random and independent simulations.

B. Model Validation

Extensive simulation studies have been conducted to vali-

date the Markov chain theoretical framework developed for the

message delivery probability under a given message lifetime

τ . Here only the simulation results of two network scenarios

(m = 8, n = 60, ω = 4, β = 2) and (m = 16, n = 160, ω =
3, β = 6) were presented, and that of other network scenarios

can also be easily obtained by our simulator as well [39].

Given that the message lifetime τ varies from 2000 to 4000
(time slots), the comparisons between the simulation results

and theoretical ones were summarized in Fig. 4. Notice that

all the simulation results of message delivery probability were

reported with the 95% confidence intervals.
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Fig. 5. Delivery probability vs. waiting time in random waypoint model.

Fig. 4 indicates clearly that for both the network scenarios

there, the simulated message delivery probabilities under the

i.i.d. mobility model match nicely with the theoretical ones, so

our framework can be used to efficiently model the message

delivery process in MANETs and accurately characterize the

message delivery probability there. It is also interesting to

observe from Figs. 4a and 4b that for the two network sce-

narios there, the simulated message delivery probability under

the random walk model and random waypoint model (with

tw = 0) exhibit very similar behaviors with that under the

i.i.d. mobility model, where the three curves almost coincide

with each other. Actually, it is related to the cell-partitioned

network considered in this paper and the special setting of

tw = 0 used for the random waypoint model. One can easily

see that in a cell-partitioned network where nodes roam from

cell to cell, the steady-state channel distribution under the

random waypoint model with tw = 0 is the same as that

under the random walk and i.i.d. models, which results in

very similar message delivery probability under these three

mobility models. As shown in [24], [34], for a cell-partitioned

network, the average delay and network throughput capacity

under the i.i.d. mobility model are also identical to those

under other non-i.i.d. mobility models if they follow the same

steady-state channel distribution. Therefore, our theoretical

models, although were developed for the message delivery

probability under the i.i.d. mobility model, can also be used

to nicely capture the message delivery probability behaviors

in MANETs under the random walk and random waypoint

mobility models.

We further conducted simulation studies to explore how the

waiting time tw would affect the message delivery probability

in random waypoint mobility. Specifically, for the network

scenarios of (m = 8, n = 60, ω = 4, β = 2) and (m =
16, n = 160, ω = 3, β = 6), we fix τ = 3000 and let tw vary

from 0 to 200, and summarize the corresponding simulation

results in Fig. 5. One can easily observe from Fig. 5 that

for both the network scenarios there, the message delivery

probability has a general trend of decreasing as tw increases

from 0 to 200. Actually, such behavior can be interpreted as

follows: with the setting of a bigger value of tw, each node

stays for a longer time during a cell and thus the network

topology varies less dramatically, which unavoidably results
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Fig. 6. Relationship between message delivery probability ϕ(ω, β, τ) and
message size ω, replication factor β and number of users n.

in inefficient dissemination of message frames. It is notable

that the impact of tw on the delivery probability is actually

very complicated. For example, the delivery probability of

(m = 8, n = 60, ω = 4, β = 2) remains almost unchanged

as 0.75 when tw ∈ [0, 60] and starts to decrease when

tw > 60. However, this is not the case for the scenario of

(m = 16, n = 160, ω = 3, β = 6), where the delivery

probability monotonically decreases with tw.

C. Performance Analysis

Based on the Markov chain theoretical framework for the

message delivery probability, we now proceed to explore the
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impact of message size ω on the message delivery probability

ϕ(ω, β, τ). With m = 8, n = 100 and τ = 3000, we

examined three settings of β = 1, 2 and 4, and summarized

the corresponding results in Fig. 6a. One can easily observe

from Fig. 6a that, the message delivery probability diminishes

quickly as ω increases up. For example, for the setting of

β = 4, the message delivery probability at ω = 2 is 0.88,

which is almost 5.18 times that of ω = 6 (0.17). A further

careful observation of Fig. 6a indicates that under the same

setting of ω, a bigger value of β results in a bigger delivery

probability. Combining with the results in Fig. 4, we can see

that the message lifetime τ , therefore, should be carefully

tuned according to the message size ω, replication factor β
and node density (i.e., n/m2) so as to guarantee a specified

message delivery.

Fig. 6b illustrates how the message delivery probability

ϕ(ω, β, τ) varies with the replication factor β. It is easy to

see that for all the three settings of ω = 4, ω = 5 and

ω = 6 there, the message delivery probability ϕ(ω, β, τ)
monotonically increases with the replication factor β. It is

interesting to observe from Fig. 6b that, the slope of each curve

(i.e., the increasing tendency) decreases as β increases up,

and there exists some threshold value of β, beyond which the

delivery probability performance has almost no improvement.

Specifically, for the setting ω = 5 (resp. ω = 6), the message

delivery probability remains nearly unchanged as 0.45 (resp.

0.28) when β ≥ 6 (resp. β ≥ 5). Thus, for a two-hop

relay MANET with erasure coding, there exists a limiting

(asymptotic) performance for the message delivery probability,

which is determined only by the control parameters (ω, τ).
Actually, the reason why the delivery probability saturates

as β is increased is due to the fact that given the node mobility

pattern and message lifetime τ , only a limited number of

frames (or erasure coded blocks) can be distributed out by the

source S before the message becomes expired. Specifically,

for a message of ω blocks at S, when β is relatively small

(i.e., when all ω · β frames can be distributed out before

message expiration), increasing β could increase the number

of relay nodes carrying the message frames and thus improve

the message delivery probability; however, when β continues

to increase up, all ω ·β frames cannot be distributed out before

message expiration. Since the number of frames that S can

distribute out before message expiration depends only on node

mobility pattern and message lifetime (i.e., independent of ω
and β), increasing β could not increase the message delivery

probability any more. Therefore, the message delivery prob-

ability becomes saturated as β increases beyond a threshold

value. Furthermore, we can see that given the message lifetime,

the bigger the message size ω, the smaller the threshold value

of β (i.e., the faster the message delivery probability becomes

saturated), as shown in Fig. 6b.

Finally, we examine in Fig. 6c how the delivery performance

ϕ(ω, β, τ) varies with the number of users n, given that

ω = 2, β = 4,m = 24. We can see from Fig. 6c that for

each setting of τ there, we can find a most suitable network

size n∗ to achieve the maximum message delivery probability

ϕ(ω, β, τ). For example, for the setting τ = 1500, τ = 2000
and τ = 2500, the corresponding n∗ are 66, 62 and 58,
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Fig. 7. Optimum setting n∗ vs. message lifetime τ .

respectively. Actually, it can be explained as follows: for a

given message lifetime τ and relay scheme setting (ω, β),
when n < n∗, the network is sparse and the increasing of

n could help increase the probability to distribute a frame and

thus improve the message delivery speed; while as n > n∗,

the network users become relatively densely distributed and

the negative effects of interference and medium contention

issues begin to dominate the delivery performance.

We now apply our framework to further explore how the

optimum setting n∗ (as observed in Fig. 6c) varies with the

message lifetime τ . With ω = 2 and β = 4, we consider three

different cell partitions m = 16, 24 and 32 and summarize the

corresponding results in Fig. 7. One can observe from Fig. 7

that, n∗ monotonically decreases with τ and n∗ is actually a

piecewise function of τ , i.e., a specific value of n∗ can only

apply to a small range of τ . A further careful observation of

Fig. 7 indicates that under the same setting of τ , a bigger

cell partition (i.e., m) could always result in a bigger n∗.

Furthermore, one can also see that as m increases up, the

n∗ in Fig. 7 becomes much more sensitive to the variations

of τ (i.e., as m increases up, an optimum setting n∗ applies

to a narrower range of τ ). Therefore, the optimum setting n∗

depends much more heavily on the variations of τ in a network

with a bigger cell partition m.

The above behaviors of n∗ with m and τ observed in

Fig. 7 can be intuitively explained as follows. Recall that in

this paper we consider a cell-partitioned network where the

network area is evenly divided into m×m equal cells. Since

the mobile nodes roam from cell to cell, the nodes become

relatively sparsely distributed in the network as m increases

up. Furthermore, as shown in Fig. 6c, for a sparsely distributed

network increasing the number of nodes could improve the

message delivery probability. Therefore, given the message

lifetime τ , the optimum setting of the number of nodes (i.e.,

n∗) increases for a bigger value of m, so as to achieve the

maximum delivery probability. We now proceed to justify the

monotonically decreasing behavior of n∗ with τ . For a given

network cell partition m, a relay node carrying a frame will

have more chances to deliver the frame to the destination node

as the message lifetime τ increases, which results in a higher

message delivery probability as shown in Fig. 4. Since each

relay node has a higher probability to deliver its frame to
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Fig. 8. The minimum message lifetime τ∗ required to guarantee the 95%
delivery probability.

the destination under the setting of a bigger τ , the maximum

delivery probability could be achieved via relatively fewer

nodes. Thus, the optimal setting n∗ decreases with the message

lifetime τ .

D. Minimum Message Lifetime τ∗

To see how the message lifetime should be tuned according

to a specific delivery probability target, we now apply our

framework to network scenarios (m = 8, β = 2) and

(m = 16, β = 4), and show in Fig. 8 the minimum message

lifetime τ∗ required to guarantee the 95% delivery probability,

i.e., τ∗ = min{τ |ϕ(ω, β, τ) ≥ 0.95}. We let the message

size ω vary from 1 to 12 and summarize in Fig. 8a the

corresponding τ∗, given that n = {40, 60, 80}. It is easy

to observe from Fig. 8a that the minimum message lifetime

τ∗ monotonically increases as the message size ω increases.

A further careful observation of Fig. 8a indicates that for

all the three n settings there, τ∗ is much more sensitive to

the variations of ω when ω is relatively small, where the

slope of each curve gradually decreases as ω increases up.

Different from that in Fig. 8a, the minimum message lifetime

τ∗ illustrated in Fig. 8b, first decreases and then increases as

n varies from 20 to 200 for all the three settings ω = {2, 3, 4}
there. Specifically, for the settings ω = 2, ω = 3 and

ω = 4, a minimum τ∗ of 3695, 4299 and 4858 are achieved

at the settings n = 26, n = 31 and n = 35, respectively.

Actually, such behavior can be attributed to the reason that

in a sparsely distributed network, increasing the number of

users n could improve the message delivery speed and thus the

message delivery probability, as shown in Fig. 6c. Therefore,

our theoretical framework can be very helpful for network

designers to determine a suitable message lifetime so as to

meet the specified delivery probability requirement.

V. CONCLUSION

In this paper, we have investigated the message delivery

probability in two-hop relay MANETs with erasure coding. A

general Markov chain theoretical framework was developed to

characterize the message delivery process, which can also be

used to analyze the delivery probability performances under

other popular routing protocols. Based on the new theoretical

framework, closed-form expressions were further derived for

the delivery probability under any given message lifetime and

message size. As verified by extensive simulation studies,

our framework can be used to efficiently model the message

delivery process and thus accurately characterize the delivery

probability performance there. Our results indicate that for

a two-hop relay MANET with erasure coding, there exists

a limiting performance for the delivery probability, which is

determined only by the control parameters of message size

ω and message lifetime τ . Another interesting finding of

our work is that the considered MANETs actually exhibit

very similar behaviors in terms of delivery probability under

different node mobility models, like the i.i.d., random walk and

random waypoint. It is expected that this paper will contribute

to the future network design in terms of determining a suitable

message lifetime, so as to minimize the per node buffer

occupation and power consumption while simultaneously meet

the specified delivery performance requirement.

Note that the theoretical framework and closed-form results

developed in this paper only hold for the simple scenario

that each node has only a single message to deliver to its

destination, and it chooses to conduct a “source-to-relay” or

“relay-to-destination” transmission in a probabilistic fashion.

Therefore, one future work is to further explore the delivery

probability of two-hop relay with erasure coding in a more

general scenario, where each node may need to simultaneously

deliver k distinct messages, and it conducts the “source-to-

relay” or “relay-to-destination” transmission in the best-effort

fashion so as to take the full advantage of each transmission

opportunity. Another interesting future direction is to extend

the theoretical models in this paper to analytically derive

the optimum setting of n (i.e., n∗) to achieve the maximum

message delivery probability for a given relay scheme setting

of (ω, β, τ), or to formally determine the asymptotic (limiting)

delivery probability for any specified control parameters of ω
and τ .
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