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Abstract—Recently, the “big dat” emerged as a hot topic
because of the tremendous growth of the Information and
Communication Technology (ICT). One of the highly anticipated
key contributors of the big data in the future networks is
the distributed Wireless Sensor Networks (WSNs). Although
the data generated by an individual sensor may not appear
to be significant, the overall data generated across numerous
sensors in the densely distributed WSNs can produce a significant
portion of the big data. Energy-efficient big data gathering in the
densely distributed sensor networks is, therefore, a challenging
research area. One of the most effective solutions to address this
challenge is to utilize the sink node’s mobility to facilitate the data
gathering. While this technique can reduce energy consumption
of the sensor nodes, the use of mobile sink presents additional
challenges such as determining the sink node’s trajectory and
cluster formation prior to data collection. In this paper, we
propose a new mobile sink routing and data gathering method
through network clustering based on modified Expectation-
Maximization (EM) technique. In addition, we derive an optimal
number of clusters to minimize the energy consumption. The
effectiveness of our proposal is verified through numerical results.

Index Terms—Big data, Wireless Sensor Networks (WSNs),
clustering, optimization, data gathering, and energy efficiency.

I. I NTRODUCTION

RECENT development of various areas of Information and
Communication Technology (ICT) has contributed to an

explosive growth in the volume of data. According to a report
published by IBM in 2012 [1] , 90 percent of the data in the
world was generated in the previous two years. As a conse-
quence, the concept of the big data has emerged as a widely
recognized trend, which is currently attracting much attention
from government, industry, and academia [2]. As shown in
Fig. 1, the big data comprises high volume, high velocity,
and high variety information assets [3], which are difficult to
gather, store, and process by using the available technologies.
The variety indicates that the data is of highly varied structures
(e.g. data generated by a wide range of sources such as
Machine-to-Machine (M2M), Radio Frequency Identification
(RFID), and sensors) while the velocity refers to the high
speed processing/analysis (e.g., click-streaming, fast database
transactions, and so forth). On the other hand, the volume
refers to the fact that a lot of data needs to be gathered
for processing and analysis. Although currently used services
(e.g. social networks, cloud storage, network switches, and so
forth) are already generating much volume of the big data,

Fig. 1. Major trends of big data gathering

it is anticipated that more and more data will be generated
by sensors/RFID devices such as thermometric sensors, atmo-
spheric sensors, motion sensors, accelerometers, and so on. In
fact, according to a report by ORACLE [4], the volume of
data generated by sensors and RFID devices is expected to
reach the order of petabytes. Interestingly as shown in Fig. 1,
the sensors are responsible for generation of big data in big
volume and also in a wide variety.

Gathering the large volume and wide variety of the sensed
data is, indeed, critical as a number of important domains of
human endeavor are becoming increasingly reliant on these
remotely sensed information. For example, in smart-houses
with densely deployed sensors, users can access temperature,
humidity, health information, electricity consumption, and so
forth by using smart sensing devices. In order to gather these
data, the Wireless Sensor Networks (WSNs) are constructed
whereby the sensors relay their data to the “sink”. However,
in case of widely and densely distributed WSNs (e.g. in
schools, urban areas, mountains, and so forth) [5], [6], there
are two problems in gathering the data sensed by millions of
sensors. First, the network is divided to some sub-networks
because of the limited wireless communication range. For
example, sensors deployed in a building may not be able
to communicate with the sensors which are distributed in
the neighboring buildings. Therefore, limited communication
range may pose a challenge for data collection from all sensor
nodes. Second, the wireless transmission consumes the energy
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of the sensors. Even though the volume of data generated by
an individual sensor is not significant, each sensor requires
a lot of energy to relay the data generated by surrounding
sensors. Especially in dense WSNs, the life time of sensors
will be very short because each sensor node relays a lot of
data generated by tremendous number of surrounding sensors.
In order to solve these problems, we need an energy-efficient
method to gather huge volume of data from a large number
of sensors in the densely distributed WSNs.

To achieve energy-efficient data collection in densely dis-
tributed WSNs, there have been many existing approaches.
For example, the data compression technology [7] is capable
of shrinking the volume of the transmitted data. Although
it is easy to be implemented, the data compression technol-
ogy requires the nodes to be equipped with a big volume
of storage and high computational power. In addition, the
topology control technology can evaluate the best logical
topology and reduce redundant wireless transmissions [8], [9].
When the redundant wireless transmissions are reduced, the
required energy for wireless transmissions can be also reduced.
Furthermore flow control and routing can choose the path
which consists of nodes having high remaining energy [10],
[11]. However, these technologies are not able to deal with
the divided networks problem.

To deal with both the divided sub-network problem and
the energy consumption issue, the mobile sink schemes have
received great attention in literature. In such schemes, the data
collector, referred to as the “sink node” (or simply the sink)
is assumed to be mobile such as Vehicle, Unmanned Aerial
Vehicle (UAV), and so on. As the sink node moves around
the sensing area, the sensor nodes send data to the sink node
when the sink node comes in their proximity. Thus, energy
consumption can be decreased by reducing the amount of
relays in the WSN. Since the mobile sink schemes aim to
reduce wireless transmissions, the trajectory of the sink node is
decided based on the sensor nodes’ information (e.g., location
and residual energy). The sink node divides the sensor nodes
into a number of clusters based on a certain condition. Then,
the sink node roams around in these clusters.

In this paper, we propose an energy minimized cluster-
ing algorithm by using the Expectation-Maximization (EM)
algorithm for 2-dimensional Gaussian mixture distribution.
Our proposal aims to minimize the sum of square of wire-
less communication distance since the energy consumption
is proportional to the square of the wireless communication
distance. Moreover, we first focus on the “data request flooding
problem” to decide the optimal number of clusters. The data
request flooding problem refers to the energy inefficiency that
occurs when all the nodes broadcast data request messages to
their respective neighboring nodes. This problem wastes en-
ergy, particularly in the high density WSNs. Previous research
work advocates increasing the number of clusters to reduce the
data transmission energy. However, in this paper, we point out
that an excessive number of clusters can result in performance
degradation, and therefore, we propose an adequate method for
deriving the optimal number of clusters.

The remainder of the paper is organized as follows. Sec-
tion II reviews some related works and presents our research

motivation. In Section III, we present our proposed clustering
algorithm based on a modified EM technique. Section IV
illustrates the derivation of the optimal number of clusters.
Performance evaluation is presented in Section V. Finally,
Section VI concludes the paper.

II. RELATED WORKS AND OUR MOTIVATION

The review conducted by Sagirogluet al. [3] highlighted
that big data and its analysis are at the core of modern
science and business. Sagirogluet al. identified a number of
sources of big data such as online transactions, emails, audios,
videos, images, click-streams, logs, posts, search queries,
health records, social networking interactions, mobile phones
and applications, scientific equipment, and sensors. Also, it
was pointed out, in their work, that the big data are difficult
to capture, form, store, manage, share, analyze, and visualize
via conventional database tools. Furthermore, the three main
characteristics of big data, namely variety, volume, and veloc-
ity are discussed in that work that were briefly described in
Section I.

According to the report by ORACLE in [12], the concept
of big data is stimulating a wide range of industry sectors.
Specific examples of big data generated by sensors were
provided in the report. For instance, manufacturing companies
usually embed sensors in their machinery for monitoring usage
patterns, predicting maintenance problems, and enhancing the
product quality. By studying the data streams generated by the
sensors embedded in the machinery allow the manufacturers
to improve their products. The numerous sensors deployed in
the supply lines of utility providers generate a huge volume
of data, which are consistently monitored for production
quality, safety, maintenance, and so forth. Other examples of
sensors generating a bulk of the big data consist in electronic
sensors monitoring mechanical and atmospheric conditions. In
addition, sensors used for healthcare services (to monitor bio-
metrics of the human body, patients’ conditions, healthcare
diagnoses, treatment phases, and so forth) are identified to
be a rich source of big data in the report presented in [12].
However, how to gather the sensed data from these numerous
sensors in an energy-efficient manner remained beyond the
scope of the report.

The work in [13] presented a cloud-based federated frame-
work for sensor services. The main objective of the work
was to enable seamless exchange of feeds from large numbers
of heterogeneous sensors. Various applications using big data
generated by densely distributed WSNs have also emerged in
literature. In addition, in [14] and [15], big data in terms of
the healthcare information (e.g., blood pressure and heart rate)
sensed by numerous sensors are used to realize remote medical
care services. Furthermore, patients’ location information are
used to arrange prompt dispatch of ambulances. Large volume
of data gathered from location-sensors attached to animals
enabled researchers to observe various animal habitats [16],
[17]. Because widely and densely distributed WSNs collect
various types of data, the overall data which are gathered
is, indeed, overwhelming. To efficiently gather the big data
generated by the densely distributed WSNs is, however, not
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an easy task since the WSNs may be divided into sub-networks
because of the limited wireless communication range of the
sensors.

In conventional research works, data gathering using the
mobile sink in WSNs has been widely studied in literature.
Data Mobile Ubiquitous LAN Extensions (MULEs) [18] is
the one of the most prominent and earliest studies on the
mobile sink scheme. Data MULEs follow the basic steps of
all the mobile sink schemes. First, it divides sensor nodes
into clusters. Second, it decides the route for patrolling each
cluster. The work in [18] assumes a simple data collection
scheme whereby the mobile sink node divides sensor nodes
into grids regardless of the sensor nodes’ location, and patrols
the grids by using random walk between the neighboring grids.
However, this type of clustering, which is not based on the
nodes’ location, might result in inefficient data gathering. If
there is no sensor node remaining in the cluster, patrolling
the empty cluster results in waste of time and degraded
efficiency. Also, patrolling based on randomness might result
in unbalanced visits to clusters with different numbers of
sensor nodes. Thus, the mobile sink might fail to collect
information.

Low-Energy Adaptive Clustering Hierarchy (LEACH) [19]
is one of the most famous clustering algorithms in WSNs using
the static sink node. In LEACH, the clustering algorithm is
executed by the each sensor node. Sensor nodes exchange
information on their residual energies, and the nodes with
higher residual energy are given a higher probability of
becoming a cluster head. By doing periodical re-clustering,
energy consumption of each node becomes eventually equal.
However, LEACH still has several shortcomings. For example,
because LEACH is based on the assumption that each node
can communicate with all other nodes, the WSNs deployed
in wide areas are not able to use the algorithm. Most of the
distributed algorithms like LEACH naturally consider the limi-
tation of the node’s communication range.K-hop Overlapping
Clustering Algorithm (KOCA) [20] andk-hop connectivity
ID (k-CONID) [21] are examples of the distributed clustering
algorithms. Authors of KOCA focused on multiple overlap-
ping clusters, and designed the KOCA algorithm based on a
probabilistic cluster head selection and nodes’ location. Thek-
CONID algorithm is also a probabilistic algorithm. The nodes
exchange their random IDs with each other, and the node that
has the minimum ID within k-hop is selected as a cluster head.

In WSNs, minimizing data transmission is difficult for a dis-
tributed clustering algorithm. If a WSN is physically divided
into sub-networks, a node cannot possess information about all
the nodes in the WSNs. Thus, the algorithm cannot achieve
optimization. To realize minimum energy clustering, we need
to use the centralized clustering algorithm. Moreover, the
centralized clustering algorithm, which is conducted by a super
node, is suitable for the mobile sink scheme. Power-Efficient
Gathering in Sensor Information Systems (PEGASIS) [22] and
KAT mobility (K-means And TSP mobility) [23] are one
of the centralized clustering algorithms. PEGASIS algorithm
constructs chain clusters of nodes based on location, and
repeats cluster head selection. PEGASIS algorithm considers
the limitation of the communication range, and achieves

uniform energy consumption. However, the algorithm still
does not achieve minimization of energy consumption because
the clustering algorithm uses greedy algorithm. KAT mobility
divides the nodes into clusters by using k-means algorithm.
Becausek-means algorithm is the centralized clustering al-
gorithm based on the node’s location, the clustering result is
closer to the total optimization. While the result is the optimal
cluster that reduces energy consumption, the KAT mobility
algorithm is designed without considering the communication
range limitation. Therefore, the mobile sink might fail to
collect information from all nodes.

Contemporary research on the sensor node clustering algo-
rithm can be classified into three types, namely centralized
algorithms without considering nodes’ information (i.e., loca-
tion or communication range), distributed algorithms without
considering nodes’ information, and distributed algorithms
that consider the nodes’ location and communication range.
However, to achieve both minimization of data transmission
and data collection from all the nodes, we need to use a
centralized algorithm, which considers the nodes’ location
and communication range. Unlike existing algorithms, our
proposed clustering algorithm achieves both minimization of
data transmission and data collection.

Earlier research works on sensor node clustering algorithms
demonstrates that the increasing number of clusters reduces
energy consumption for data transmission. Certainly, the idea
holds since increasing the number of clusters decreases the
cluster-sizes and shortens the transmission length. Some re-
searchers consider that certain limitations on the number of
cluster can be decided by other factors. For example, in [24],
the limitation is the maximum acceptable latency of data
collection. The authors of [24] also defined the limitation
by a node’s buffer size. While these limitations are realistic
assumptions, they do not consider the energy consumption for
data requests. In our paper, we first focus on the effect of
data request messages by increasing the number of clusters.
Based on a simple and common data gathering model of the
densely distributed WSNs, we demonstrate that the number of
data request messages has a noticeable impact on the energy
consumption of the sensor nodes. When the connectivity of
the nodes becomes bigger, the impact becomes larger also. In
this paper, we present how to evaluate the optimal number
of clusters to minimize the energy consumption of the sensor
nodes.

III. C LUSTERING-BASED BIG DATA GATHERING IN

DENSELY DISTRIBUTEDWSN

In this section, we first outline the clustering problem in
WSN using mobile sink and the challenges in solving this
problem. After that, we introduce the considered network
model and the overview of EM algorithm for clustering. Based
on EM algorithm, we proposed our clustering method and the
procedure to gather data using the proposed method.

A. Clustering problem

When considering the scheme of data gathering in WSN
using mobile sink, the biggest challenge in reducing energy
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Fig. 2. An example of the considered network.

consumption is how to decide the location where data gath-
ering is conducted. In other words, this problem has same
meaning as answering the following two questions. 1) What
is the best algorithm for dividing nodes into clusters? 2)
How many clusters is optimal in terms of reducing energy
consumption? As we assume that required energy for data
transmission of node is proportional to the square of trans-
mission distance, the best clustering algorithm to minimize
energy consumption for data transmission must minimize the
sum of square of data transmission distance in a network.
EM algorithm is powerful and well-known tool to solve the
clustering problem by repeatedly calculate the simple math
formula. Since the EM algorithm can minimize the sum of
square of distance between every node and cluster centroid,
we adopt EM algorithm over the 2-dimensional Gaussian
mixture distribution. However, there is a limitation of the
maximum communication range in the realistic situation. Not
all nodes can connect to each other and also to the cluster
centroid. Nodes that cannot directly communicate with the
cluster centroid need to communicate in a multi-hop manner.
In multi-hop communication, communication distance is a sum
of distance between nodes in multi-hop path. Therefore, as
shown in Fig. 2, communication distance is different from
direct distance. However, the EM algorithm minimize the sum
of square of direct distance, not communication distance. Thus,
we need to adapt the EM algorithm to the situation of limited
maximum communication range and improve it such as to
minimize the sum of square of communication distance.

B. Considered network model

In this paper, we consider a network which consists of a
mobile sink and many sensor nodes spread within a limited
field. Every sensor node knows its location by using local-
ization technology, and the mobile sink knows all nodes’
locations. Regardless of being a sink or the sensor, a node has a
limited communication rangeR and communication is always
successful if it is withinR. The mobile sink node patrols
the cluster centroids that are calculated to minimize energy
consumption for data transmission, and collects data from

sensor nodes. Sensor nodes are equipped with a buffer memory
and store sensed information until mobile sink approaches the
cluster centroid. The information is transferred to the sink
node by multi-hop fashion. In this paper, we assume a densely
distributed WSN in a large area such as schools, urban areas,
mountains, and so forth and thus WSNs are divided into sub-
networks. Fig. 2 shows a simple example of the assumed
network.N sensor nodes illustrated by circles are distributed
in the targetL × L area.K centers of clusters illustrated
by filled circle is to be visited by mobile sink. A solid-fill
area and a dotted circle means “group” of nodes and cluster,
respectively. In this paper, “group” means a set of nodes that
can communicate with each other. The nodes that belong to
different groups cannot communicate with each other due to
being far away. There areG groups in the field, andNg and
Kg refers to the number of nodes and number of clusters in
thegth group, respectively. The number of groups is calculated
by the nodes’ location and communication rangeR. In case
of Fig. 2,N1 = 7 andK1 = 2 because there are 7 nodes and
2 clusters in group 1.

C. Overview of EM algorithm for clustering

The EM algorithm is a classical clustering algorithm, which
assumes that nodes are distributed according to Gaussian
mixture distribution,

p(x) =

K∑
k=1

πkN (x|µk,Σk) , (1)

whereK andπk indicate the total number of clusters and the
mixing coefficient of thekth cluster, respectively.N (x|µ,Σ)
is defined as follows,

N (x|µ,Σ)

=
1

(2π) |Σ|1/2
exp

{
−1

2
(x− µ)

T
Σ−1 (x− µ)

}
, (2)

wherex is the position vectors of all nodes. Cluster parame-
ters,µk andΣk, are the position vector of centroid of cluster
k and 2×2 covariance matrix of thekth cluster, respectively.

At the first step, EM algorithm calculates each node’s value
of degree of dependence that is referred to as responsibility.
The responsibility shows how much a node depends on a
cluster. Thenth node’s value of degree of dependence onkth
cluster is given by following equation.

γnk =
πkN (xn|µk,Σk)

K∑
j=1

πjN
(
xn|µj ,Σj

) . (3)

Because of its definition, the responsibility takes values be-
tween 0 and 1. At the second step, the EM algorithm evaluates
K weighted center of gravity of a 2-dimensional location
vector of nodes. This evaluation uses the responsibility value
as weight of nodes. At the third step, the locations of the
cluster centroids are changed to the weighted centers of gravity
evaluated in the second step. And EM algorithm evaluates the
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value of the log likelihood as shown below.

P = ln p(X|µ,Σ,π)

=

N∑
n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
.

(4)

Until the value of log likelihood converge, the EM algorithm
repeats all steps. This value of log likelihood is monotonously
decreasing, and the EM algorithm always terminates. Because
the EM algorithm repeatedly updates cluster centroids’ posi-
tion vector,µk, and nodes’ responsibility tokth cluster,γnk

,
the sum of square of distances of each node to cluster gradually
decreases and finally becomes optimal.

D. Proposed clustering method

Our objective is to propose a clustering method based on
the EM algorithm. In supposed widely and densely deployed
WSNs, which have high variety and high volume of data, we
need to consider “groups”, which refer to sets of nodes that
can communicate with each other. Therefore, nodes that cannot
communicate with each other belongs to different groups. To
collect data from all nodes, the number of clusters must be set
to more than the number of groups. Our proposed clustering
method can be summarized in Algorithm 1.

At first, the mobile sink sets the cluster centroids,µ, to
random locations. By using a random position vector of
cluster centroids, communication distances of each node to
cluster centroids,Dnk, are calculated. Thereafter, the mixing
coefficient,π, and covariance matrix,Σ, are calculated.

After the cluster initialization phase, our proposed method
selects a groupg that has the largest value of proportion of
number of nodes to the number of clusters in groupg, shown
as follows,

vg =
Kg

Ng
. (5)

In the selected group that has the highest value ofvg, our
proposed method picks up all nodes that belong to group
g and updates these node’s responsibility value,γnk. This
responsibility value reflects how much noden belongs to
cluster k. By using the updated responsibility,γnk, cluster
centroids,µ, and covariance matrix,Σ, are re-calculated, and
the number of nodes which belongs tokth cluster is calculated
as shown in the following equation,

Nk =
∑

xn∈X

γnk. (6)

These calculation are repeatedly executed until the differ-
ence between the newly calculatedP and previously calculated
P becomes smaller than small number,ϵ.

E. Data gathering procedure using the proposed clustering
technique

After clustering, the mobile sink patrols every cluster cen-
troid and collects the data from the nodes in the cluster. It is
easy to see that delay is a main problem of using mobile sink
in WSNs. This delay is the waiting time from data generation
to data sending. Because the mobile sink moves relatively slow

Algorithm 1 Proposed clustering algorithm
Initialize cluster centroids,µ, to random locations.
Calculate clusters’ parameters,π andΣ.
CalculateDnk andP.
while |P − Pnew| < ϵ do

Select a groupg which has the biggest valuevg.
for k ∈ Kg do

for n ∈ Ng do
Calculatenth node’s responsibility value,γnk.

end for
Calculate number of nodes belong to cluster,Nk.
Update the clusters’ parameters,π, µ andΣ, by using
Nk.

end for
Evaluate the log likelihoodPnew.

end while
Return cluster centroids,µ, covariance matrix,Σ, and the
number of nodes that belongs to each cluster.

compared with electrical communication between nodes, the
mobile sink scheme causes long delay. To shorten this delay,
we need to minimize total patrolling path length. Thus, in
our scheme the mobile sink patrols along Traveling Salesman
Problem (TSP) path of all cluster centroids.

Once the mobile sink arrives at the cluster centroids, it
collects data from sensor nodes. Directed Diffusion [25] is
one of the most famous data collection schemes in WSNs.
In our method, we consider using a typical example of them,
i.e., “One Phase Pull [26] where the mobile sink node sends
data request message at the cluster centroids. When a sensor
node receives a data request message from clusterk, the node
re-broadcasts the data request message and replies data to the
neighboring node, which is the parent node in the data request
tree of clusterk. Then, the node relays data messages to the
sink.

To minimize the total required energy to send data, all
nodes send the sensed information according to the value of
responsibility of the cluster. The responsibility value is calcu-
lated based on the given parameters,µ, π, andΣ, according
to (3). These parameters are added to data request message
and sent by the sink. Only after the sensor deployment, each
node exchanges its own position vector,x, with sensor nodes
belonging to same groups. Because the exchange of position
vector is executed only one time after the sensor deployment,
the energy consumption is not significant. As a result, when a
node belongs to only one cluster, the node can send all data
to the sink node. And when a node belongs to more than one
clusters, the node sends data according to the responsibility
of each cluster. In case ofγn1 = 0.6 and γn2 = 0.4, if the
nth node receives a data request message that is sent by the
sink node at the centroid of cluster 1, the node replies 60%
of data. And if the node receives data request message that is
sent from cluster 2, the node sends 40% of data to the sink
node at the centroid of cluster 2. By sending data using this
cluster adapted Directed Diffusion scheme, we can minimize
total required energy to send data.
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(a) Low connectivity network (b) High connectivity network

Fig. 3. Data request flooding in low and high connectivity network.

IV. D ERIVING THE OPTIMAL NUMBER OF CLUSTERS IN

THE PROPOSED CLUSTERING METHOD

The data gathering method presented in the previous sec-
tion aims to minimize energy consumed by gathering data.
However, it still has a remaining issue, which is to find the
optimal number of clusters. Previous researches in literature
often consider increasing the number of clusters lead to
the decrease of energy consumption for data transmission.
However, such researches do not take into consideration the
energy consumption of data request message. In this section,
we point out this problem, and show an analysis to derive the
optimal number of clusters.

A. Definition of connectivity

To analyze the correlation between energy consumption and
connectivity, we formulate the connectivity of nodes. In this
paper, we define the connectivity as the portion of nodes that
can communicate with each other.

C =

∑G
g=1 Ng(Ng − 1)

N(N − 1)
. (7)

This metric takes a value between 0 and 1. When all nodes can
communicate with each other, the value of connectivity is 1.
If every node is isolated, the value is 0. When the mobile sink
starts computing the optimal number of clusters, the mobile
sink node knows every sensor nodes’ location. Therefore, the
mobile sink can calculate the connectivity valueC based on
nodes’ location.

B. Data request flooding problem

In WSN using mobile sink, the sink node sends data request
message to invoke data transmission from sensor nodes when
it arrives at the cluster centroids. The nodes that receive
data request message send the data to the sink node and
broadcast data request message to their neighboring nodes.
That data request message is repeatedly broadcasted until all
nodes that belong to the same group receive the message.
Although some nodes may receive data request message more
than 2 times, they only send data and broadcast the data
request message once after the first time of receiving the
message. These broadcasts of data request message cause
high energy consumption because the network will be flooded
with redundant wireless communication. Thus, reducing data
request transmission is also important for mobile sink scheme.

The impact of data request flooding issues becomes signif-
icant when connectivity becomes larger as an example shown
in Fig. 3. In Fig. 3(a) and Fig. 3(b), there are two groups
and one group, respectively. Six sensor nodes are scattered
on the ground. Furthermore, the sink nodes traverse the two
cluster centroids, and broadcasts the data request message. In
the case of Fig. 3(a), nodes can only communicate with the
nodes that belongs to the same group. Sink node broadcasts
data request message to each node at cluster 1, and these nodes
broadcast the data request message. Therefore, the sum of the
transmission of data request message of both cluster 1 and
cluster 2 is 6. On the other hand, in Fig. 3(b), where nodes
can communicate with all nodes, the data request message
sent at the cluster 1 is transferred to all nodes. Furthermore,
all nodes broadcast the data request message. Therefore, sum
of the transmission of data request message of both cluster 1
and cluster 2 is 12.

Even if number of nodes and clusters stay the same, the data
request flooding problem becomes more serious with higher
connectivity. Moreover, it is clearly understood that the total
number of transmitted data request messages increase when
the numbers of clusters increases. Because of this problem, it
is necessary to find the optimal number of clusters in terms
of connectivity and energy consumption.

C. Computing the optimal number of clusters

To decide the optimal number of clusters, we need to define
objective function. The objective function is defined as the
sum of required energy of data and data request message
transmissions. Thus, the objective function,W (K), can be
defined as the sum of energy consumption in one cycle of
mobile sink patrol as follows.

W (K) = DReqEReq(K) +DDatEDat(K), (8)

whereEReq(K) and EDat(K) are the sums of the square of
transmission distance of data requests and data messages,
respectively.DReq and DDat indicate the data size of data
and data request messages, respectively.EDat(K) is evaluated
according to the following equation:

EDat =

N∑
n=1

K∑
k=1

Hnk∑
h=1

γnk · l2h, (9)

where Hnk is the hop count fromnth node tokth cluster
centroid andlh is communication distance of each hop. When
nth node cannot communicate withkth centroid, we set the
value of Hnk to 0 and the value of required energy to 0.
Moreover, each node re-broadcasts each data request message
one time with the maximum transmission power. Since the
data transmission energy,EDat(K), is a decreasing function
of K while data request transmission energy,EReq(K), is
an increasing function ofK, there is a trade-off relationship
between the first and second terms in the right side of (8). By
considering the condition that the number of clusters,K, must
be greater than the number of groups,G, the optimal number
of clusters,Kopt, is defined by the following equation.
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Kopt = max(G, arg min
K

(W (K))). (10)

In order to calculate the required energy to transmit data
request messages, we consider one group of node that has
Ng nodes andKg cluster centroids. Data request message is
sent from every cluster and every node re-broadcasts it one
time. Thus, the total required energy to transmit data request
massage is formulated as follows:

EReq=

G∑
g=1

KgNgR
2, (11)

whereR is the maximum transmission range of sensor nodes.
For simplicity, constant variables are omitted. If there is no
imbalance of location of cluster centroids, the number of nodes
that belongs to each cluster is the same.

Kg

Ng
=

K

N
(12)

Here, if the number of nodes is larger than 1, the connectivity,
C, can be approximated as follows:

C =

∑G
g=1 Ng(Ng − 1)

N(N − 1)
≑

∑G
g=1 N

2
g

N2
. (13)

Therefore, from (11), (12) and (13),EReq can be calculated as
follows:

EReq= KNR2C. (14)

This analysis says that the required energy for data request
transmission is proportional to connectivity. Thus, it can be
seen that the number of clusters has a significant effect on con-
nectivity. Moreover, the function is a monotonically increasing
function ofK which indicates that a lower number of clusters
is better for reducing energy of data request transmissions.

By calculating the required energy for data transmission as
in (14), and data request transmission as in (9), the optimal
number of clusters, (10), can be calculated by using (8) and
(10).

V. PERFORMANCE EVALUATION

We conducted performance evaluation by using a clustering
simulator built by C++ programming language. In this section,
we first evaluate the clustering efficiency. Then we evaluate
total energy consumption to evaluate our proposed methd of
optimizing number of clusters.

A. Efficient data collection

In this experiment, we measure the energy consumption for
data transmissions,EDat, and the efficiency of our proposed
clustering algorithm by varying the number of nodes. Table
I shows simulation parameters used in the first experiment.
Sensors are uniformly deployed in a 5000× 5000 square
meters area. The nodes’ communication range is set to 438.57
meters, and we measureEDat and efficiency of our proposal

TABLE I
ENVIRONMENTS OF1ST EXPERIMENT

Node distribution Uniformly random
Number of cluster,K 10
Number of node,N 20 - 100
Communication range,R 438.57m
Length of one side of field,L 5000m

TABLE II
ENVIRONMENT OF 2ND EXPERIMENT

Number of cluster,K 5 - 50
Number of node,N 50 - 100
Communication range,R 200m - 600m
Length of one side of field,L 1000m - 5000m
Clustering algorithm Proposed algorithm

clustering by varying the number of sensor nodes.EDat rep-
resented in (9) simply shows how much energy is needed
for data transmissions from sensor nodes to the mobile sink.
However, if locations of every centroid is far away from nodes
and they cannot establish connection,EDat value is calculated
as 0 according to (9). This value does not reflect energy
saving, but it only indicates failure of clustering. The clustering
algorithm that do not consider connectivity suffer from this
failure (e.g. pure EM algorithm). Thus, we also use a second
metric, referred to as efficiency, which combinesEDat value
and number of connected nodes.

Efficiency=
(Number of connected node)

EDat
. (15)

We compare our clustering algorithm with EM algorithm
and k-COIND algorithm, which are centralized clustering
algorithm and distributed clustering algorithm, respectively.
Our clustering algorithm is a centralized algorithm considering
connectivity, unlike EM algorithm.

Figure 4(a) and 4(b) are experimental results of required
energy and efficiency respectively. As can be seen from (9),
(11), the energy consumption is proportional to the square
of data transmission range, we measure energy in units of
m2, i.e., omitting constant variables. Figure 4(a) shows the
proposed scheme and pure EM algorithm can reduce required
energy significantly compared withk-CONID algorithm. The
reason of this difference is based on difference between
centralized and distributed cluster establishment. The central-
ized algorithm can calculate more efficient clustering than
the distributed one. Our proposed scheme behaves similar
to the EM algorithm, but has less energy consumption. This
improvement occurs from considering connectivity and com-
munication distance. Fig. 4(b) shows that EM algorithm is the
worst clustering algorithm when node density is low. Since
EM algorithm does not consider node connectivity and is
centralized algorithm, when the number of nodes is low and
node density is small, centroids of EM algorithm can connect
only to a small number of nodes. Our proposed scheme
succeeds to adapt to node density variation and minimizes
transmission energy.
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Fig. 5. Effect of the number of cluster.

B. Optimal number of clusters

To evaluate our proposed method of optimizing number of
clusters, we measure the energy consumption by varying the
number of clusters. Energy consumption is defined as the sum
of energy consumption of data transmissions and data requests.
Given parameters are enumerated in Table II. We set parameter
DDat/DReq to 512.

Figure 5(a) shows the required energy for data transmissions
and data request transmissions, and Fig. 5(b) shows the
objective function. As described in the previous subsection,
energy is measured in units of m2. Black dots are the optimal
number of cluster computed by using our method. Dash lines
in Fig. 5(b) are the area where the number of clusters is
smaller than the number of groups. In those areas, a mobile
sink cannot collect all data. By using our method, the optimal
number of cluster is decided as 17, 23, 32, 47, and 50 when
connectivity is 1.0, 0.8, 0.6, 0.4, and 0.2, respectively. These
results show that “traditional method” which increases the
number of clusters is not always the best solution to reduce
energy consumption.

VI. CONCLUSION

In this paper, we investigated the challenging issues pertain-
ing to the collection of the “big data” generated by densely
distributed WSNs. Our investigation suggested that energy-
efficient big data gathering in such networks is, indeed, neces-
sary. While the conventional mobile sink schemes can reduce
energy consumption of the sensor nodes, they lead to a number
of additional challenges such as determining the sink node’s
trajectory and cluster formation prior to data collection. To ad-
dress these challenges, we proposed a mobile sink based data
collection method by introducing a new clustering method.
Our clustering method is based upon a modified Expectation-
Maximization technique. Furthermore, an optimal number of
clusters to minimize the energy consumption was evaluated.
Numerical results were presented to verify the effectiveness of
our proposal.
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