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An Intrusion Detection System (IDS) for Combating
Attacks Against Cognitive Radio Networks

Zubair Md. Fadlullah, Hiroki Nishiyama, and Nei Kato, TohokuUniversity
Mostafa M. Fouda, Tohoku University and Benha University

Abstract—While cognitive radio networks (CRNs) present a
promising solution to solve the scarcity of the radio spectrum,
they are still susceptible to security threats. Until now, only a
few researchers considered the use of intrusion detection systems
(IDSs) to combat these threats against CRNs. In this article, we
describe a CRN based on IEEE wireless regional area network
(WRAN) and describe some of the security threats against it. For
the secondary users in the CRN to quickly detect whether they
are being attacked, a simple yet effective IDS is then presented.
Our proposal uses non-parametric cumulative sum (cusum) as
the change point detection algorithm to discover the abnormal
behavior due to attacks. Our proposed IDS adopts an anomaly
detection approach and it profiles the CRN system parameters
through a learning phase. So, our proposal is also able to detect
new types of attacks. As an example, we present the case of
detection of a jamming attack, which was not known to the IDS
beforehand. The proposed IDS is evaluated through computer
based simulations, and the simulation results clearly indicate the
effectiveness of our proposal.

Index Terms—Cognitive radio network (CRN), intrusion de-
tection system (IDS), jamming.

I. I NTRODUCTION

Recently, the explosive growth of wireless services and
applications led to a shortage of radio spectrum. Since the Fed-
eral Communication Commission (FCC) approved unlicensed
users to access the unused portion of the reserved spectrum
(e.g., television channels) for wireless broadband services,
various researchers have devoted a lot of effort in designing
cognitive radio networks (CRNs) to exploit this feature. CRNs
are intelligent networks, which allow unlicensed users to use
software radio for making the best use of the available/unused
spectrum. While doing so, the unlicensed “cognitive” users
should be transparent. In other words, they may not interfere
with the primary users (i.e., the users for whom the system
was originally designed) in order to share the radio spectrum
resource in CRNs such as those based on IEEE 802.22 wireless
regional area network (WRAN) technology [1]. This radio
spectrum sharing policy among the licensed and unlicensed
users, however, opens up the possibility of various security
threats. Indeed, a number of attacks have been studied in
recent literature that target CRNs. Although some solutions
have been presented to detect these attacks, to the best of our
knowledge to date, a full-fledged intrusion detection system
(IDS) has not yet been designed for combating the attacks
against CRNs. The research work presented in [2] pioneered
in addressing the need of IDS for CRNs as a second line
of intrusion/attack detection in addition to the conventional
cryptographic primitives for facilitating authentication and

confidentiality. Even though the work in [2] defined some of
the essential modules for designing an IDS for CRNs, it did
not focus on specifying any lightweight detection algorithm.
Having understood the lack of research work on the IDS based
defense for CRNs, we are motivated to design an effective
IDS for deployment in the cognitive unlicensed users. Our
proposed IDS uses cusum based anomaly detection, which is
lightweight and is able to discover previously unknown attacks
with a significantly low detection latency.

The remainder of the article is organized as follows. First,
we survey a number of relevant research works on security
threats against CRNs and some possible countermeasures.
Then, we describe our considered CRN architecture and ma-
jor security threats against the CRN. Next, we present our
proposed IDS for the cognitive users of a CRN. Then, the
performance of the proposed method is evaluated. Finally, the
article is concluded.

II. RELATED WORK

An introduction to the first wireless standard based upon
CRNs is presented in the work by Cordeiroet al. [1] in
2006. The work demonstrated the prospect of CRN based
wireless communication by using the IEEE 802.22 WRAN
technology. A detailed overview of the WRAN specifications,
topology, service requirements, capacity, and applications were
presented in the work. Most importantly, it specified the 802.22
system to comprise a fixed point-to-multipoint wireless air
interface, in which a base station manages its own cell and
all associated consumer premise equipment (CPE). Note that
the word “cognitive/secondary users” replaced the term CPEin
later literature. While Corderiroet al. provided the foundation
for using the WRAN technology based on CRN, it was still
early days for their work to consider any of the WRAN/CRN
security issues.

The security threats against CRN have been studied by a
number of recent researchers. A noteworthy survey on the
existing attacks against CRNs was carried out by Olgaet
al. [3] that analyzes the CRN security problems. The work
not only classifies attacks and their impact on the CRNs but
also identifies novel types of abuses targeting these systems.
Furthermore, some security solutions are discussed to mitigate
these threats against CRNs. Another comprehensive survey
of these threats and their existing countermeasures can be
found in the work conducted by El-Hajjet al. [4]. The
work clearly points out that the successful deployment of
CRNs depends on the correct construction and maintenance
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TABLE I
ISSUES/REQUIREMENTS OF WIRED AND WIRELESS INTRUSION DETECTION SYSTEMS.

Wired IDS issues Wireless IDS issues
Wired security defenses are not required to deal with layer 1and 2 Misconfigured and/or rogue base stations can expose the entire
attacks targeting wireless communications, such as reconnaissance, wireless network to layer 2 attacks, which cannot be detected

man-in-the-middle attacks, and jamming attacks. by traditional layer 3 firewalls.
Wired intrusion detection and prevention systems often rely Wireless intrusion detection systems do not have this luxury

on deep packet inspection. as the wireless user usually communicates with the base station over
encrypted connections.

Firewalls and network address translation (NAT) can ensurethat Malicious wireless users are free to capture all traffic in the
outsiders cannot directly see the internal end-users connected air, and can attempt to directly inject traffic, jam the

to the wired network let alone capture their traffic. end-users, and probe their vulnerabilities.

of security measures to thwart attacks. Then, it provides a
taxonomy of attacks based on their “layers.” Four categories
of threats are described, namely physical, link, network, and
transport layer attacks. Also, the techniques to mitigate the
threats belonging to each of these classes are also discussed
in their work. A common point of these surveys is that their
covered countermeasures do not indicate recent initiatives on
designing appropriate IDSs for combating the security attacks
on CRNs.

A pioneering piece of work indicating the need of IDS
in a CRN is presented by Olgaet al. in [2]. This work
explains that most of the existing cryptographic primitives
(e.g., authentication and encryption techniques) used in other
wireless communication systems may be applicable to CRNs
as a first line of defense. However, they may not be sufficient.
As an additional defensive mechanism, Olgaet al. proposed
a number of modules for designing an IDS for CRNs. How-
ever, the work does not offer a full-fledged IDS, especially
with a lightweight attack detection technology. This implies
that designing an IDS capable of combating attacks against
CRNs with a lightweight detection algorithm is, to date, an
open research issue. In addition, it is worth mentioning that
there are differences between designing IDSs for wired and
wireless networks. Table I highlights some of the fundamental
issues/requirements of wired and wireless IDSs. From the
table, it may be concluded that wired access medium is
usually physically secured. So, the traditional wired IDSs
do not require monitoring the airspace. On the other hand,
wireless communication uses air for data transmission. Air
is, however, an uncontrolled and shared medium. So, wireless
IDSs confront the challenge of monitoring (and if possible
somehow securing) the airspace from which a variety of
wireless attacks can be launched.

III. E XISTING CRN ARCHITECTURE ANDATTACK

TAXONOMY

In this section, we present one of the existing IEEE 802.22
WRAN based CRN architectures [1], followed by an attack
model targeting the considered CRN system.

A. CRN architecture

Our considered CRN system model based on IEEE 802.22
WRAN is depicted in Fig. 1. For simplicity, the figure in-
cludes only one television broadcasting tower whereas multi-
ple broadcasting towers may also be present. The television

companies have license to broadcast their programs through
the reserved band of the 54 to 806 MHz. So, the television
companies (along with their subscribers) formulate the “pri-
mary users” of the system. On the other hand, the IEEE 802.22
WRAN specification allows a number of “cells”, each of which
is managed by a base station (BS). The WRAN cells form
our considered CRN. The service coverage radius of each of
the WRAN cells featuring collocated CRNs varies from 33
to 100km. Each CRN can support a number of “secondary
users”, who may access the unused spaces of the spectrum,
which is usually reserved for the television companies, i.e.,
the primary users. These unused spaces of the spectrum might
occur due to different scenarios, e.g., when the television
broadcast is offline/idle. The unused portions of the spectrum
are referred to as “white spaces”. Each secondary user is
equipped with software radio to sense whether the primary
users are currently occupying a channel or not. If the channel
is occupied, the secondary user has the ability to intelligently
adapt his radio to another channel in order to sense the white
spaces of that channel. The intelligent adaptation with the
external environment is possible as the cognitive engine isable
to continuously learn by utilizing online and offline learning
policies. The plot in Fig. 1 demonstrates an example of how
the secondary users share the spectrum with the primary ones
over time. It is worth noting that the plot shows a simple
illustration for ease of understanding, and the white spaces
are not necessarily contiguous. For detailed overview of the
system, interested readers are encouraged to read the work
in [1].

B. Major security threats against CRN

Since CRNs are basically wireless networks, they inherit
most of the well known security threats of wireless systems.
The attack taxonomy presented in the work [4] classifies these
threats based on the layer in which they are carried out. The
transport layer threats usually disrupt the transport control pro-
tocol (TCP). “Lion” attack is an example of this. The network
layer attacks against CRN include sinkhole and HELLO flood
attacks. The link layer attacks comprise spectrum sensing data
falsification (which is a type of Byzantine attack similar to
that studied in ad hoc networks) and a denial of service (DoS)
attack by saturating the control channel of the CRN. On the
other hand, the physical layer attacks against CRNs consist
of primary user emulation (PUE) attack, objective function
attack, and the jamming attack. Since physical layer attacks
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Fig. 1. Considered CRN architecture illustrating how the licensed band with white spaces can be shared by the secondary users.

are more challenging to deal with, we present a brief overview
of these threats as follows [4].

• PUE attack: In this attack, an adversary secondary user
aims at preventing legitimate secondary users from using
the white spaces in the spectrum. For example, the
adversary may exploit the “quiet periods” of the CRN
during which no secondary user should transmit in order
to facilitate spectrum sensing. If the adversary transmits
during the quiet period, then the other legitimate users
will back off by considering that a primary user (i.e., the
adversary in this case) is accessing the spectrum. There
are a number of other techniques by which the adversary
may pretend as a primary user and trick the legitimate
secondary users.

• Objective function attack: Cognitive radio is an intel-
ligent radio, which is capable of sensing the spectral
environment, learning from previous history, and making
smart decisions for adjusting its transmission parameters
depending on the current environmental conditions. These
parameters are computed by the cognitive engine by
solving objective functions. Assume a simple objective
function to find the radio parameters, which balance
the data rate and security. Consider the impact when
a knowledgeable malicious attacker performs jamming
attack every time a legitimate secondary user attempts
to transmit data with high security. This makes the le-
gitimate secondary user’s cognitive engine to experience
that the network conditions are unfavorable for secure
transmission. As a consequence, the legitimate user drops
his security level and transmits data with low/no security.
Thus, the malicious attacker forces the victim radio to
use a low security level, which can be eavesdropped or
hacked.

• Jamming attack: Like other wireless communication sys-
tems, jamming attack is one of the most difficult threats
in CRNs. A jamming attacker may transmit continuous

packets to force a legitimate secondary user to never sense
an idle channel. This leads to a DoS type attack whereby
the legitimate user is unable to access any white space.

In order to detect the above mentioned attacks, there have
been many scattered proposals, which have been surveyed
in [3], [4]. However, IDS based attack detection strategy has
not yet been studied extensively. In fact, it is important to
have a common IDS with a general detection policy to fit
(i.e., thwart) most, if not all the threats. In the next section,
we present our proposed IDS to deal with this issue.

IV. PROPOSEDIDS

The conventional IDSs usually follow either mis-use or
anomaly based attack detection methods. The mis-use based
detection method uses signatures of already known attacks.
However, the mis-use based approach cannot discover new
types of attacks effectively. On the other hand, as its name
implies, the anomaly based detection methodology relies on
finding the “anomaly”, which represents an abnormal mode of
operation in the system. By designing an appropriate anomaly
based intrusion/attack detection system, it may be possible
to detect new (i.e., not known beforehand) attacks, which
generate some abnormal change in the targeted CRN. This
is the reason why it is better to use the anomaly based
intrusion detection technique in the IDS for identifying attacks
in CRNs. It is worth mentioning that some of our earlier
works employed a variety of statistical detection techniques
for different types of wireless networks [5] [6]. However,
many of the existing statistical detection techniques may not
be adequate for designing an IDS for CRN as it presents
a unique challenge. Specifically in CRN, a centralized IDS
may not be able to detect a malicious attack and notify the
secondary users quick enough, and therefore, it is important to
facilitate lightweight yet effective IDSs in the secondaryusers
themselves. Toward this end, in the following, we present our
anomaly based IDS, which utilizes time-series cumulative sum
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(cusum) hypothesis testing [7]. The reason behind choosing
cusum for our proposed detection engine is due to its low
complexity and overhead. As a consequence, the IDS can be
lightweight and deployed in the individual secondary users.
Note that such IDS deployment does not conflict with the
regulation of the FCC that prohibits changing primary user
systems [4].

As mentioned earlier, each secondary user is assumed to
have an IDS. The IDS operates in two steps, namely learning
or profiling phase and detection phase. In the remainder of
this section, we describe these two phases in detail.

A. Learning phase

To effectively detect anomalies due to various types of
attacks, the IDS needs to be designed in such a fashion
that it may learn the normal behavior of protocol operation,
traffic flow, primary user access time, packet delivery ratio
(PDR), signal strength (SS), and so forth. The IDS may learn
these information by constructing a statistical profile during
normal CRN conditions or with acceptable (i.e., low) level of
suspicious activities.

To make it clear to the readers, an example of a physical
layer attack, i.e., the jamming attack, is considered for our
study. In order to identify the jamming attack, let us consider
a simple observation made by a secondary user involving its
PDR and SS. The PDR of a user indicates the ratio of the
number of packets received by the user to that of the packets
sent to him. Note that while this is an example case of the
IDS learning phase (which arises from a specific jamming
attack against the CRN), our IDS is not limited to learning
this feature only. In fact, if the IDS is appropriately designed
by taking into consideration the CRN system specifications,
wireless protocol behavior, and so forth, it can learn various
modes of operation of the CRN. The acquired information can
facilitate the detection phase of the IDS to discover unknown
intrusions or attacks against the targeted CRN.

B. Detection phase

The proposed IDS detection phase relies on finding the point
of change in the CRN operation as quickly as possible under
an attack.

First, let us present a physical layer jamming attack as
follows. When a malicious user jams a secondary user’s
connection, the following observations can be made. While
the SS measured at that secondary user remains high, his PDR
usually drops [2], [8], [9]. This happens because the secondary
user never receives some/all of the packets sent to him. Our
point of interest is how to detect the change point in the PDR
behavior of a secondary user (targeted by a jamming attacker).
In other words, how can the IDS find when the PDR of the
secondary user is dropping significantly enough to reflect the
impact of a jamming attack? In the following, our proposed
IDS with cusum based anomaly detection is presented to deal
with this issue.

Assume that the IDS operates over equal time-rounds,∆n

(where n = 1, 2, 3, ...). Let the mean ofFn during the
profiling period (i.e., no or low jamming attack scenario)

be represented bym. The idea is that the IDS continues to
monitor a significant change in the value ofm that can be
considered as the influence of the jamming attack.m remains
close to one until an anomaly occurs (which is later shown in
Fig. 2(a) in Section V). However, an assumption of the non-
parametric cusum algorithm suggests that the mean value of
the random sequence should be negative during the normal
conditions and becomes positive upon a change. Therefore,
a new sequenceGn = β − Fn is obtained whereβ is the
average of the minimum/negative peak values ofFn during
the profiling period (as shown in Fig. 2(b)).

During a jamming attack, the increase in the mean ofGn

can be lower bounded byh = (2β). Then, the cusum sequence
Yn is expressed as follows.

Yn = (Yn−1 +Gn)
+; Y0 = 0 (1)

wherex+ = x if x > 0; otherwise,x+ = 0.
A large value ofYn strongly implies an anomaly (i.e., the

effect of jamming attack in this case). The detection threshold,
θ is computed as follows [10].

θ = (m− β)tdes (2)

where tdes denotes the desired detection time, which should
be set to a small value for quickly detecting an anomaly.

At the detection phase, the IDS computesYn over time.Yn

remains close to zero as long as normal conditions prevail in
the CRN. Upon a jamming attack,Yn starts to increase. When
Yn exceedsθ and as long as the SS measured at the secondary
user is high, the IDS generates an alert of a possible attack
(i.e., jamming in this case). An example of this is illustrated
in Fig. 2(c).

V. PERFORMANCEEVALUATION

In order to evaluate the performance of the proposed IDS
at the secondary user level, we consider IEEE 802.22 WRAN
topology [1]. For interested readers, the details pertaining to
the WRAN model are presented in Table II. Note that there
may be up to 68 channels and each channel may support a
maximum of 12 simultaneous secondary users in the WRAN
CRN model. Because our proposed IDS is deployed at each
of these secondary users, it is sufficient to demonstrate how
the IDS effectively operates at any secondary user under
the influence of the jamming attack. We construct computer
simulation by using MATLAB [11] to demonstrate this point
as follows.

In our experiment, a jamming attack is simulated which
interferes with the PDR of the secondary users. The strength
of the jamming attack against a victim (i.e., influenced or
overwhelmed by the attack) secondary user is defined to be
proportional to the decrease in PDR of the victim. In other
words, if the attack strength (in terms of percent of the
transmitter’s SS) is denoted byµ and the normal PDR isn
(note that the value ofn is assumed to be from 80% to 100%
under normal conditions), then the victim experiences a drop
in PDR by (100 − µ)% of n%. By using this definition, the
jamming attack strength is varied from a significantly small
value of 2% to an overwhelming 100%. The performance of
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TABLE II
IEEE 802.22 WRANBASED COGNITIVE RADIO NETWORK SYSTEM

PARAMETERS.

WRAN parameter Value
Wireless bandwidth 54 to 806 MHz
Number of channels 68

Individual channel bandwidth 6 MHz
54 to 72 MHz, 76 to 88 MHz,

Band ranges 174 to 216 MHz,
and 470 to 806 MHz

Maximum number of 12
simultaneous secondary users
Minimum peak downlink rate 1.5 Mbps

per secondary user
Minimum peak uplink rate 384 Kbps

per secondary user
Cell coverage 33 to 100 km

Spectral efficiency 3 bits/s/Hz
Total physical data rate per channel 18 Mbps

Packet size (MTU) 1518 bytes
Minimum frames per second 129.51
(received per secondary user)

the IDS is investigated under these attacks of various attack
strengths.

In the graphs presented in Fig. 2, we demonstrate how the
proposed cusum based detection algorithm operates at the IDS
of a secondary user under the influence of a jamming attack
with µ=50%, which represents a medium strength attack in our
simulations. The monitoring time-round length is set to 1s.The
learning phase of this user is considered to run for 100 time-
rounds. The detection phase also comprises 100 time-rounds.
For ease of understanding, we show both normal (i.e., without
attack) and jamming attack scenarios during the detection
phase. The attack commences during the 160th time-round,
and continues up to the end of the conducted simulation.
Fig. 2(a) exhibits theFn sequence monitored by the IDS
of the secondary user during learning and detection phases.
As shown in the figure,Fn remains close to one during the
learning phase and also during the attack-less segment of the
detection phase. Observe how sharplyFn drops at the advent
of the attack withµ = 50% and continues to exhibit this trend
for the remaining course of the simulation. In other words, the
mean ofFn remains close to 0.9 when there was no attack, and
drops substantially to 0.45 as the secondary user is jammed.
Fig. 2(b) demonstrates theGn plot over time that was obtained
by subtractingFn from the transformation parameterβ. In
the simulation,β is set to the minimumFn value found (i.e.,
0.8019) during the observation period. As a consequence,Gn

becomes negative during the normal learning phase. Then, by
using eq. (2), the attack thresholdθ is computed to be 0.0941.
This is used in computing theYn values in the detection
phase of the IDS as demonstrated in Fig. 2(c). As evident
from the result,Yn remains zero from 100 to 160 time-rounds.
After the beginning of the jamming attack at the 160th time-
round, Yn exceedsθ just in the following time-round. This
reflects an anomalous event with respect to the normal profile
constructed during the learning phase. Therefore, the IDS
issues an alert to the victim secondary user about a possible
attack (i.e., jamming attack in this case). If the anomalous
condition persists for a long time, the IDS may instruct the
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Fig. 2. Illustrating the functionality of cusum based attack detection. In this
example, an attack withµ = 50% is considered that started from the 160th

time-round.

victim to move to a different channel of the CRN, or even
change its location.

Next, we investigate the detection latency experienced by
the proposed IDS for different attack strengths as shown
in the plot in Fig. 3. For this purpose, the simulations are
conducted 100 times, and the average values are used as
results. Note that the detection latencies for the jamming attack
with µ = 2% to 6% are not shown in the plot. This is because
this particular attack is too weak and cannot be detected
within the considered detection period. However, these attacks
with relatively low attack strength cannot have a substantial
impact on the victim, i.e., they cannot decrease the victim’s
PDR dramatically. On the other hand, for the attack with
µ = 8%, 10%, 12%, 14%, 16%, and 18%, the corresponding
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detection latencies are 12.25s, 10.64s, 6.59s, 4.16s, 2.85s, and
2.14s, respectively. It is worth mentioning that in an individual
simulation run, the detection latency should be an integer
value as the time-round length is set to 1s in the conducted
simulations. However, due to the fact that we used the average
of the detection latencies obtained from multiple simulation
runs, the corresponding detection latencies are computed to
be non-integer values. The time to detect the attack decreases
further for the attacks withµ ≥ 20%, and is found to be
ranging from 2s to 1s since the commencement of the attack.
Note thatµ values exceeding 30% are not shown in the plot in
Fig. 3 as they also exhibit the same detection latency of 1s. In
summary, these results indicate that our proposed IDS at the
victim secondary user can effectively detect the influence of
the considered attack with substantially low detection latency.

VI. CONCLUSION

In this article, we highlighted the importance on designing
appropriate intrusion detection systems to combat attacks
against cognitive radio networks. Also, we proposed a simple
yet effective IDS, which can be easily implemented in the
secondary users’ cognitive radio software. Our proposed IDS
uses non-parametric cusum algorithm, which offers anomaly
detection. By learning the normal mode of operations and sys-
tem parameters of a CRN, the proposed IDS is able to detect
suspicious (i.e., anomalous or abnormal) behavior arisingfrom
an attack. In particular, we presented an example of a jamming
attack against a CRN secondary user, and demonstrated how
our proposed IDS is able to detect the attack with low detection
latency. In future, our work will perform further investigations
on how to enhance the detection sensitivity of the IDS.
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